3 resultados para Rhianus, of Crete.

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes a Late Miocene (early Tortonian - early Messinian) transitional carbonate system that combines elements of tropical and cool-water carbonate systems (Irakleion Basin, island of Crete, Greece). As documented by stratal geometries, the submarine topography of the basin was controlled by tilting blocks. Coral reefs formed by Porites and Tarbellastrea occurred in a narrow clastic coastal belt along a „central Cretan landmass“, and steep escarpments formed by faulting. Extensive covers of level-bottom communities existed in a low-energy environment on the gentle dip-slope ramps of the blocks that show the widest geographical distribution within the basin. Consistent patterns of landward and basinward shift of coastal onlap in all outcrop studies reveal an overriding control of 3rd and 4th order sea level changes on sediment dynamics and facies distributions over block movements. An increasingly dry climate and the complex submarine topography of the fault block mosaic kept sediment and nutrient discharge at a minimum. The skeletal limestone facies therefore reflects oligotrophic conditions and a sea surface temperature (SST) near the lower threshold temperature of coral reefs in a climatic position transitional between the tropical coral reef belt and the temperate zone. Stable isotope records (δ18O, δ13C) from massiv, exceptionally preserved Late Miocene aragonite coral skeletons reflect seasonal changes in sea surface temperature and symbiont autotrophy. Spectral analysis of a 69 years coral δ18O record reveals significant variance at interannual time scales (5-6 years) that matches the present-day eastern Mediterranean climate variability controlled by the Arctic Oscillation/North Atlantic Oscillation (AO/NAO), the Northern Hemisphere’s dominant mode of atmospheric variability. Supported by simulations with a complex atmospheric general circulation model coupled to a mixed-layer ocean model, it is suggested, that climate dynamics in the eastern Mediterranean and central Europe reflect atmospheric variability related to the Icelandic Low 10 million years ago. Usually, Miocene corals are transformed in calcite spar in geological time and isotope values are reset by diagenetic alteration. It is demonstrated that the relicts of growth bands represent an intriguing source of information for the growth conditions of fossil corals. Recrystallized growth bands were measured systematically in massive Porites from Crete. The Late Miocene corals were growing slowly with 2-4 mm/yr, compatible with present-day Porites from high latitude reefs, a relationship that fits the position of Crete at the margin of the Miocene tropical reef belt. Over Late Miocene time (Tortonian - early Messinian) growth rates remained remarkably constant, and if the modern growth temperature relationship for massive Porites applies to the Neogene, minimum (winter) SST did not exceed 19-21°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, conditions of deposition and stratigraphical architecture of Neogene (Tortonian, 11-6,7Ma) sediments of southern central Crete were analysed. In order to improve resolution of paleoclimatic data, new methods were applied to quantify environmental parameters and to increase the chronostratigraphic resolution in shallow water sediments. A relationship between paleoenvironmental change observed on Crete and global processes was established and a depositional model was developed. Based on a detailed analysis of the distribution of non geniculate coralline red algae, index values for water temperature and water depth were established and tested with the distribution patterns of benthic foraminifera and symbiont-bearing corals. Calcite shelled bivalves were sampled from the Algarve coast (southern Portugal) and central Crete and then 87Sr/86Sr was measured. A high resolution chronostratigraphy was developed based on the correlation between fluctuations in Sr ratios in the measured sections and in a late Miocene global seawater Sr isotope reference curve. Applying this method, a time frame was established to compare paleoenvironmental data from southern central Crete with global information on climate change reflected in oxygen isotope data. The comparison between paleotemperature data based on red algae and global oxygen isotope data showed that the employed index values reflect global change in temperature. Data indicate a warm interval during earliest Tortonian, a second short warm interval between 10 and 9,5Ma, a longer climatic optimum between 9 and 8Ma and an interval of increasing temperatures in the latest Tortonian. The distribution of coral reefs and carpets shows that during the warm intervals, the depositional environment became tropical while temperate climates prevailed during the cold interval. Since relative tectonic movements after initial half-graben formation in the early Tortonian were low in southern central Crete, sedimentary successions strongly respond to global sea-level fluctuation. A characteristic sedimentary succession formed during a 3rd order sea-level cycle: It comprises mixed siliciclastic-limestone deposited during sea-level fall and lowstand, homogenous red algal deposits formed during sea-level rise and coral carpets formed during late rise and highstand. Individual beds in the succession reflect glacioeustatic fluctuations that are most prominent in the mixed siliciclastic-limestone interval. These results confirm the fact that sedimentary successions deposited at the critical threshold between temperate and tropical environments develop characteristic changes in depositional systems and biotic associations that can be used to assemble paleoclimatic datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From historical accounts it is well-known that the coasts of the Gulfs of Lakonia and Argolis (southern and eastern Peloponnese, Greece) have been repeatedly affected by tsunamis during historical times. It is assumed that these palaeotsunamis left sedimentological and geomorphological traces in the geological record which are still detectable these days. As both gulfs are located within one of the seismically most active regions in whole western Eurasia in particular the nearby Hellenic Trench is regarded as the main trigger for tsunami generation. Against this background, selected near-coast sedimentary archives were studied by means of sedimentological, geomorphological, geophysical, geochemical and microfaunal investigations in order to detect signatures of Holocene palaeotsunamigenic activity. The investigations revealed allochthonous sediment layers featuring distinctive sedimentary characteristics of marine high-energy event deposits in most of the investigated study areas. In order to differentiate between the geomorphodynamic driving mechanisms for the deposition of the associated marine high-energy event layers, a multi-method approach was used. The detected high-energy marine deposits are suggested to be of tsunamigenic origin. Radiocarbon dating results allowed establishing local event geo-chronostratigraphies and correlations on a local and regional scale as well as correlations with already described palaeotsunami findings on a supra-regional scale. The geochronological dataset attests repeated tsunamigenic activity at least since the 5th millennium BC up to the 17th century AD. For the studied areas in southeastern Lakonia up to four palaeotsunami event generations were identified, for central Lakonia three and for the investigated areas around the Argolis Gulf also up to four. Comparing the findings with literature data, chronological correlations were found with palaeotsunami deposits detected in near-coast geological archives of Akarnania, of the southwestern, the western and northwestern Peloponnese, with event deposits found on Crete and on the Ionian Islands of Cefalonia and Lefkada as well as with findings from southeastern Sicily (Italy) and Cesarea (Israel). By the identification of multiple palaeotsunami event layers, disturbing autochthonous near-coast sedimentary records of the Gulfs of Lakonia and Argolis during the last seven millennia, a significant tsunami frequency is attested for these regions.