4 resultados para Reducing Emissions from Deforestation and Degradation REDD
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The biogenic production of NO in the soil accounts for between 10% and 40% of the global total. A large degree of the uncertainty in the estimation of the biogenic emissions stems from a shortage of measurements in arid regions, which comprise 40% of the earths land surface area. This study examined the emission of NO from three ecosystems in southern Africa which cover an aridity gradient from semi-arid savannas in South Africa to the hyper-arid Namib Desert in Namibia. A laboratory method was used to determine the release of NO as a function of the soil moisture and the soil temperature. Various methods were used to up-scale the net potential NO emissions determined in the laboratory to the vegetation patch, landscape or regional level. The importance of landscape, vegetation and climatic characteristics is emphasized. The first study occurred in a semi-arid savanna region in South Africa, where soils were sampled from 4 landscape positions in the Kruger National Park. The maximum NO emission occurred at soil moisture contents of 10%-20% water filled pore space (WFPS). The highest net potential NO emissions came from the low lying landscape positions, which have the largest nitrogen (N) stocks and the largest input of N. Net potential NO fluxes obtained in the laboratory were converted in field fluxes for the period 2003-2005, for the four landscape positions, using soil moisture and temperature data obtained in situ at the Kruger National Park Flux Tower Site. The NO emissions ranged from 1.5-8.5 kg ha-1 a-1. The field fluxes were up-scaled to a regional basis using geographic information system (GIS) based techniques, this indicated that the highest NO emissions occurred from the Midslope positions due to their large geographical extent in the research area. Total emissions ranged from 20x103 kg in 2004 to 34x103 kg in 2003 for the 56000 ha Skukuza land type. The second study occurred in an arid savanna ecosystem in the Kalahari, Botswana. In this study I collected soils from four differing vegetation patch types including: Pan, Annual Grassland, Perennial Grassland and Bush Encroached patches. The maximum net potential NO fluxes ranged from 0.27 ng m-2 s-1 in the Pan patches to 2.95 ng m-2 s-1 in the Perennial Grassland patches. The net potential NO emissions were up-scaled for the year December 2005-November 2006. This was done using 1) the net potential NO emissions determined in the laboratory, 2) the vegetation patch distribution obtained from LANDSAT NDVI measurements 3) estimated soil moisture contents obtained from ENVISAT ASAR measurements and 4) soil surface temperature measurements using MODIS 8 day land surface temperature measurements. This up-scaling procedure gave NO fluxes which ranged from 1.8 g ha-1 month-1 in the winter months (June and July) to 323 g ha-1 month-1 in the summer months (January-March). Differences occurred between the vegetation patches where the highest NO fluxes occurred in the Perennial Grassland patches and the lowest in the Pan patches. Over the course of the year the mean up-scaled NO emission for the studied region was 0.54 kg ha-1 a-1 and accounts for a loss of approximately 7.4% of the estimated N input to the region. The third study occurred in the hyper-arid Namib Desert in Namibia. Soils were sampled from three ecosystems; Dunes, Gravel Plains and the Riparian zone of the Kuiseb River. The net potential NO flux measured in the laboratory was used to estimate the NO flux for the Namib Desert for 2006 using modelled soil moisture and temperature data from the European Centre for Medium Range Weather Forecasts (ECMWF) operational model on a 36km x 35km spatial resolution. The maximum net potential NO production occurred at low soil moisture contents (<10%WFPS) and the optimal temperature was 25C in the Dune and Riparian ecosystems and 35C in the Gravel Plain Ecosystems. The maximum net potential NO fluxes ranged from 3.0 ng m-2 s-1 in the Riparian ecosystem to 6.2 ng m-2 s-1 in the Gravel Plains ecosystem. Up-scaling the net potential NO flux gave NO fluxes of up to 0.062 kg ha-1 a-1 in the Dune ecosystem and 0.544 kg h-1 a-1 in the Gravel Plain ecosystem. From these studies it is shown that NO is emitted ubiquitously from terrestrial ecosystems, as such the NO emission potential from deserts and scrublands should be taken into account in the global NO models. The emission of NO is influenced by various factors such as landscape, vegetation and climate. This study looks at the potential emissions from certain arid and semi-arid environments in southern Africa and other parts of the world and discusses some of the important factors controlling the emission of NO from the soil.
Resumo:
Die Vegetation ist die wichtigste Quelle von organischen flchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphre haben. VOCs beeinflussen die oxidative Kapazitt der Atmosphre und tragen zu der Bildung und zum Wachstum von sekundren organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken beteiligen. Ziel dieser Arbeit war die Beschreibung und der Vergleich von VOC Emissionen aus Pflanzen aus zwei verschiedenen kosystemen: Mediterranes kosystem und Tropisches kosystem. Fr diese Aufgabe wurden gewhnliche Pflanzen von beiden kosystemen untersucht. Siebzehn Pflanzenspezies aus der Mittelmeergebiet, welches bekannt ist fr seine Vielfalt an VOC emittierenden Pflanzen, wurden in die Untersuchungen einbezogen. Im Gegensatz zum mediterranen kosystem sind nur wenig Information verfgbar ber VOC Emissionen aus Blttern tropischer Baumspezies. Vor diesem Hintergrund wurden sechsundzwanzig Baumspezies aus verschiedenen kotypen des Amazonasbeckens (Terra firme, Vrzea und Igap) wurden auf VOC Emissionen auf Blattebene mit einem Kvetten-System untersucht. Analysen von flchtigen organischen Verbindungen wurden online mit PTR-MS und offline mittels Sammlung auf entsprechenden Adsorbern (Kartuschen) und nachfolgender GC-FID Analyse untersucht. Die hchsten Emissionen wurden fr Isoprene beobachtete, gefolgt durch Monoterpene, Methanol und Aceton. Die meisten Mittelmeer Spezies emittierten eine hohe Vielfalt an Monoterpenspezies, hingegen zeigten nur fnf tropische Pflanzenspezies eine Monoterpene mit einen sehr konservativen Emissionsprofil (-Pinen>Limonen>Sabinen >-Pinen). Mittelmeerpflanzen zeigten zustzlich Emissionen von Sesquiterpenen, whrend bei der Pflanzen des Amazonas Beckens keine Sesquiterpenemissionen gefunden wurden. Dieser letzte Befund knnte aber auch durch eine niedrigere Sensitivitt des Messsystems whrend der Arbeiten im Amazonasgebiet erklrt werden. Zustzlich zu den Isoprenoidemissionen waren Methanolemissionen als Indikator fr Wachtumsvorgnge sehr verbreitet in den meisten Pflanzenspezies aus tropischen und mediterranen Gebieten. Einige Pflanzenspezies beider kosystemen zeigten Acetonemissionen. rnrnVOC Emissionen werde durch eine groe Vielfalt an biotischen und abiotischen Faktoren wie Lichtintensitt, Temperatur, CO2 und Trockenheit beeinflusst. Ein anderer, fter bersehener Faktor, der aber sehr wichtig ist fr das Amazonas Becken, ist die regelmige berflutung. In dieser Untersuchung wir fanden heraus, dass am Anfang einer Wurzelanoxie, die durch die berflutung verursacht wurde, Ethanol und Acetaldehyd emittiert werden knnen, vor allem in Pflanzenspezies, die schlechter an eine unzureichende Sauerstoffversorgung bei Flutung adaptiert sind, wie z.B. Vatairea guianensis. Die Spezies Hevea spruceana, welche besser an berflutung adaptiert ist, knnte mglicherweise der gebildete Ethanol sofort remetabolisieren ohne es zu emittieren. Nach einer langen Periode einer berflutung konnte allerdings keine Emission mehr beobachtet werden, was auf eine vollstndige Adaptation mit zunehmender Dauer schlieen lsst. Als Reaktion auf den ausgelsten Stress knnen Isoprenoidemissionen ebenfalls kurzfristig nach einigen Tage an berflutung zunehmen, fallen dann aber dann nach einer langen Periode zusammen mit der Photosynthese, Transpiration und stomatre Leitfhigkeit deutlich ab.rnrnPflanzen Ontogenese ist anscheinend von Bedeutung fr die Qualitt und Quantitt von VOC Emissionen. Aus diesem Grund wurden junge und erwachsene Bltter einiger gut charakterisierten Pflanzen Spezies aus dem Mittelmeerraum auf VOC Emissionen untersucht. Standard Emissionsfaktoren von Isopren waren niedriger in jungen Blttern als in erwachsene Bltter. Hingegen wurden hhere Monoterpen- und Sesquiterpenemissionen in jungen Bltter einiger Pflanzenspezies gefunden. Dieser Befund deutet auf eine potentielle Rolle dieser VOCs als Abwehrkomponenten gegen Pflanzenfresser oder Pathogene bei jungen Bltter hin. In einigen Fllen variierte auch die Zusammensetzung der Monoterpen- und Sesquiterpenspezies bei jungen und erwachsenen Blttern. Methanolemissionen waren, wie erwartet, hher in jungen Blttern als in ausgewachsenen Blttern, was mit der Demethylierung von Pectin bei der Zellwandreifung erklrt werden kann. Diese Befunde zu nderungen der Emissionskapazitt der Vegetation knnen fr zuknftige Modellierungen herangezogen werden. rn
Resumo:
The present-day climate in the Mediterranean region is characterized by mild, wet winters and hot, dry summers. There is contradictory evidence as to whether the present-day conditions (Mediterranean climate) already existed in the Late Miocene. This thesis presents seasonally-resolved isotope and element proxy data obtained from Late Miocene reef corals from Crete (Southern Aegean, Eastern Mediterranean) in order to illustrate climate conditions in the Mediterranean region during this time. There was a transition from greenhouse to icehouse conditions without a Greenland ice sheet during the Late Miocene. Since the Greenland ice sheet is predicted to melt fully within the next millennia, Late Miocene climate mechanisms can be considered as useful analogues in evaluating models of Northern Hemispheric climate conditions in the future. So far, high resolution chemical proxy data on Late Miocene environments are limited. In order to enlarge the proxy database for this time span, coral genus Tarbellastraea was evaluated as a new proxy archive, and proved reliable based on consistent oxygen isotope records of Tarbellastraea and the established paleoenvironmental archive of coral genus Porites. In combination with lithostratigraphic data, global 87Sr/86Sr seawater chronostratigraphy was used to constrain the numerical age of the coral sites, assuming the Mediterranean Sea to be equilibrated with global open ocean water. 87Sr/86Sr ratios of Tarbellastraea and Porites from eight stratigraphically different sampling sites were measured by thermal ionization mass spectrometry. The ratios range from 0.708900 to 0.708958 corresponding to ages of 10 to 7 Ma (Tortonian to Early Messinian). Spectral analyses of multi-decadal time-series yield interannual 18O variability with periods of ~2 and ~5 years, similar to that of modern records, indicating that pressure field systems comparable to those controlling the seasonality of present-day Mediterranean climate existed, at least intermittently, already during the Late Miocene. In addition to sea surface temperature (SST), 18O composition of coral aragonite is controlled by other parameters such as local seawater composition which as a result of precipitation and evaporation, influences sea surface salinity (SSS). The Sr/Ca ratio is considered to be independent of salinity, and was used, therefore, as an additional proxy to estimate seasonality in SST. Major and trace element concentrations in coral aragonite determined by laser ablation inductively coupled plasma mass spectrometry yield significant variations along a transect perpendicular to coral growth increments, and record varying environmental conditions. The comparison between the average SST seasonality of 7C and 9C, derived from average annual 18O (1.1) and Sr/Ca (0.579 mmol/mol) amplitudes, respectively, indicates that the 18O-derived SST seasonality is biased by seawater composition, reducing the 18O amplitude by 0.3. This value is equivalent to a seasonal SSS variation of 1, as observed under present-day Aegean Sea conditions. Concentration patterns of non-lattice bound major and trace elements, related to trapped particles within the coral skeleton, reflect seasonal input of suspended load into the reef environment. 18O, Sr/Ca and non-lattice bound element proxy records, as well as geochemical compositions of the trapped particles, provide evidence for intense precipitation in the Eastern Mediterranean during winters. Winter rain caused freshwater discharge and transport of weathering products from the hinterland into the reef environment. There is a trend in coral 18O data to more positive mean 18O values (2.7 to 1.7) coupled with decreased seasonal 18O amplitudes (1.1 to 0.7) from 10 to 7 Ma. This relationship is most easily explained in terms of more positive summer 18O. Since coral diversity and annual growth rates indicate more or less constant average SST for the Mediterranean from the Tortonian to the Early Messinian, more positive mean and summer 18O indicate increasing aridity during the Late Miocene, and more pronounced during summers. The analytical results implicate that winter rainfall and summer drought, the main characteristics of the present-day Mediterranean climate, were already present in the Mediterranean region during the Late Miocene. Some models have argued that the Mediterranean climate did not exist in this region prior to the Pliocene. However, the data presented here show that conditions comparable to those of the present-day existed either intermittently or permanently since at least about 10 Ma.
Resumo:
rnNitric oxide (NO) is important for several chemical processes in the atmosphere. Together with nitrogen dioxide (NO2 ) it is better known as nitrogen oxide (NOx ). NOx is crucial for the production and destruction of ozone. In several reactions it catalyzes the oxidation of methane and volatile organic compounds (VOCs) and in this context it is involved in the cycling of the hydroxyl radical (OH). OH is a reactive radical, capable of oxidizing most organic species. Therefore, OH is also called the detergent of the atmosphere. Nitric oxide originates from several sources: fossil fuel combustion, biomass burning, lightning and soils. Fossil fuel combustion is the largest source. The others are, depending on the reviewed literature, generally comparable to each other. The individual sources show a different temporal and spatial pattern in their magnitude of emission. Fossil fuel combustion is important in densely populated places, where NO from other sources is less important. In contrast NO emissions from soils (hereafter SNOx) or biomass burning are the dominant source of NOx in remote regions.rnBy applying an atmospheric chemistry global climate model (AC-GCM) I demonstrate that SNOx is responsible for a significant part of NOx in the atmosphere. Furthermore, it increases the O3 and OH mixing ratio substantially, leading to a 10% increase in the oxidizing efficiency of the atmosphere. Interestingly, through reduced O3 and OH mixing ratios in simulations without SNOx, the lifetime of NOx increases in regions with other dominating sources of NOx