3 resultados para Quantum Computing

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis I present theoretical and experimental results concern- ing the operation and properties of a new kind of Penning trap, the planar trap. It consists of circular electrodes printed on an isolating surface, with an homogeneous magnetic field pointing perpendicular to that surface. The motivation of such geometry is to be found in the construction of an array of planar traps for quantum informa- tional purposes. The open access to radiation of this geometry, and the long coherence times expected for Penning traps, make the planar trap a good candidate for quantum computation. Several proposals for quantum 2-qubit interactions are studied and estimates for their rates are given. An expression for the electrostatic potential is presented, and its fea- tures exposed. A detailed study of the anharmonicity of the potential is given theoretically and is later demonstrated by experiment and numerical simulations, showing good agreement. Size scalability of this trap has been studied by replacing the original planar trap by a trap twice smaller in the experimental setup. This substitution shows no scale effect apart from those expected for the scaling of the parameters of the trap. A smaller lifetime for trapped electrons is seen for this smaller trap, but is clearly matched to a bigger misalignment of the trap’s surface and the magnetic field, due to its more difficult hand manipulation. I also give a hint that this trap may be of help in studying non-linear dynamics for a sextupolarly perturbed Penning trap.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, elemental research towards the implantation of a diamond-based molecular quantum computer is presented. The approach followed requires linear alignment of endohedral fullerenes on the diamond C(100) surface in the vicinity of subsurface NV-centers. From this, four fundamental experimental challenges arise: 1) The well-controlled deposition of endohedral fullerenes on a diamond surface. 2) The creation of NV-centers in diamond close to the surface. 3) Preparation and characterization of atomically-flat diamondsurfaces. 4) Assembly of linear chains of endohedral fullerenes. First steps to overcome all these challenges were taken in the framework of this thesis. Therefore, a so-called “pulse injection” technique was implemented and tested in a UHV chamber that was custom-designed for this and further tasks. Pulse injection in principle allows for the deposition of molecules from solution onto a substrate and can therefore be used to deposit molecular species that are not stable to sublimation under UHV conditions, such as the endohedral fullerenes needed for a quantum register. Regarding the targeted creation of NV-centers, FIB experiments were carried out in cooperation with the group of Prof. Schmidt-Kaler (AG Quantum, Physics Department, Johannes Gutenberg-Universität Mainz). As an entry into this challenging task, argon cations were implanted into (111) surface-oriented CaF2 crystals. The resulting implantation spots on the surface were imaged and characterized using AFM. In this context, general relations between the impact of the ions on the surface and their valency or kinetic energy, respectively, could be established. The main part of this thesis, however, is constituted by NCAFM studies on both, bare and hydrogen-terminated diamond C(100) surfaces. In cooperation with the group of Prof. Dujardin (Molecular Nanoscience Group, ISMO, Université de Paris XI), clean and atomically-flat diamond surfaces were prepared by exposure of the substrate to a microwave hydrogen plasma. Subsequently, both surface modifications were imaged in high resolution with NC-AFM. In the process, both hydrogen atoms in the unit cell of the hydrogenated surface were resolved individually, which was not achieved in previous STM studies of this surface. The NC-AFM images also reveal, for the first time, atomic-resolution contrast on the clean, insulating diamond surface and provide real-space experimental evidence for a (2×1) surface reconstruction. With regard to the quantum computing concept, high-resolution NC-AFM imaging was also used to study the adsorption and self-assembly potential of two different kinds of fullerenes (C60 and C60F48) on aforementioned diamond surfaces. In case of the hydrogenated surface, particular attention was paid to the influence of charge transfer doping on the fullerene-substrate interaction and the morphology emerging from self-assembly. Finally, self-assembled C60 islands on the hydrogen-terminated diamond surface were subject to active manipulation by an NC-AFM tip. Two different kinds of tip-induced island growth modes have been induced and were presented. In conclusion, the results obtained provide fundamental informations mandatory for the realization of a molecular quantum computer. In the process it was shown that NC-AFM is, under proper circumstances, a very capable tool for imaging diamond surfaces with highest resolution, surpassing even what has been achieved with STM up to now. Particular attention was paid to the influence of transfer doping on the morphology of fullerenes on the hydrogenated diamond surface, revealing new possibilities for tailoring the self-assembly of molecules that have a high electron affinity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissertation entitled "Tuning of magnetic exchange interactions between organic radicals through bond and space" comprises eight chapters. In the initial part of chapter 1, an overview of organic radicals and their applications were discussed and in the latter part motivation and objective of thesis was described. As the EPR spectroscopy is a necessary tool to study organic radicals, the basic principles of EPR spectroscopy were discussed in chapter 2. rnAntiferromagnetically coupled species can be considered as a source of interacting bosons. Consequently, such biradicals can serve as molecular models of a gas of magnetic excitations which can be used for quantum computing or quantum information processing. Notably, initial small triplet state population in weakly AF coupled biradicals can be switched into larger in the presence of applied magnetic field. Such biradical systems are promising molecular models for studying the phenomena of magnetic field-induced Bose-Einstein condensation in the solid state. To observe such phenomena it is very important to control the intra- as well as inter-molecular magnetic exchange interactions. Chapters 3 to 5 deals with the tuning of intra- and inter-molecular exchange interactions utilizing different approaches. Some of which include changing the length of π-spacer, introduction of functional groups, metal complex formation with diamagnetic metal ion, variation of radical moieties etc. During this study I came across two very interesting molecules 2,7-TMPNO and BPNO, which exist in semi-quinoid form and exhibits characteristic of the biradical and quinoid form simultaneously. The 2,7-TMPNO possesses the singlet-triplet energy gap of ΔEST = –1185 K. So it is nearly unrealistic to observe the magnetic field induced spin switching. So we studied the spin switching of this molecule by photo-excitation which was discussed in chapter 6. The structural similarity of BPNO with Tschitschibabin’s HC allowed us to dig the discrepancies related to ground state of Tschitschibabin’s hydrocarbon(Discussed in chapter 7). Finally, in chapter 8 the synthesis and characterization of a neutral paramagnetic HBC derivative (HBCNO) is discussed. The magneto liquid crystalline properties of HBCNO were studied by DSC and EPR spectroscopy.rn