3 resultados para Purine salvage pathway
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Lysosomaler Transport kationischer Aminosäuren (KAS) stellt einen Rettungsweg in der Cystinose-Therapie dar. Ein solches Transportsystem wurde in humanen Hautfibroblasten beschrieben und mit System c benannt. Des Weiteren stellt lysosomales Arginin eine Substratquelle für die endotheliale NO-Synthase (eNOS) dar. Das von der eNOS gebildete NO ist ein wichtiges vasoprotektiv wirkendes Signalmolekül. Ziel war es daher, herauszufinden, ob Mitglieder der SLC7-Unterfamilie hCAT möglicherweise System c repräsentieren.rnIn dieser Arbeit konnte ich die lysosomale Lokalisation verschiedener endogener, sowie als EGFP-Fusionsproteine überexprimierter CAT-Isoformen nachweisen. Mittels Fluoreszenz-mikroskopie wurde festgestellt, dass die in U373MG-Zellen überexprimierten Fusionsproteine hCAT-1.EGFP sowie SLC7A14.EGFP mit dem lysosomalen Fluoreszenz-Farbstoff LysoTracker co-lokalisieren. Eine Lokalisation in Mitochondrien oder dem endoplasmatischem Retikulum konnte mit entsprechenden Fluoreszenz-Farbstoffen ausgeschlossen werden. Zusätzlich reicherten sich die überexprimierten Proteine hCAT-1.EGFP, hCAT-2B.EGFP und SLC7A14.EGFP in der lysosomalen Fraktion C aus U373MG-Zellen zusammen mit den lysosomalen Markern LAMP-1 und Cathepsin D an. Gleiches galt für den endogenen hCAT-1 in der lysosomalen Fraktion C aus EA.hy926- und U373MG-Zellen sowie für den SLC7A14 in den humanen Hautfibroblasten FCys5. Mit dem im Rahmen dieser Arbeit generierte Antikörper gegen natives SLC7A14 konnte erstmals die endogene Expression und Lokalisation von SLC7A14 in verschiedenen Zelltypen analysiert werden.rnObwohl eine Herunterregulation des hCAT-1 in EA.hy926-Endothelzellen nicht zu einer Reduktion der Versorgung der eNOS mit lysosomalem Arginin führte, ist eine Funktion von hCAT-1 im Lysosom wahrscheinlich. Sowohl die [3H]Arginin- als auch die [3H]Lysin-Aufnahme der Fraktion C aus U373MG-hCAT-1.EGFP war signifikant höher als in die Fraktion C aus EGFP-Kontrollzellen. Dies konnte ebenfalls für den hCAT-2B.EGFP gezeigt werden. Zusätzlich zeigten lysosomale Proben aus U373MG-hCAT-2B.EGFP-Zellen in der SSM-basierten Elektrophysiologie eine elektrogene Transportaktivität für Arginin. Das Protein SLC7A14.EGFP zeigte in keiner der beiden durchgeführten Transportstudien eine Aktivität. Dies war unerwartet, da die aus der Diplomarbeit stammende und im Rahmen dieser Dissertation erweiterte Charakterisierung der hCAT-2/A14_BK-Chimäre, die die „funktionelle Domäne“ des SLC7A14 im Rückgrat des hCAT-2 trug, zuvor den Verdacht erhärtet hatte, dass SLC7A14 ein lysosomal lokalisierter Transporter für KAS sein könnte. Diese Studien zeigten allerding erstmals, dass die „funktionelle Domäne“ der hCATs die pH-Abhängigkeit vermittelt und eine Rolle in der Substraterkennung spielt.rnZukünftig soll weiter versucht werden auch endogen eine Transportaktivität der hCATs für KAS im Lysosom nachzuweisen und das Substrat für das intrazellulär lokalisierte Waisen-Protein SLC7A14 zu finden. Eine mögliche Rolle könnte SLC7A14 als Transporter für Neurotransmitter spielen, da eine sehr prominente Expression im ZNS festgestellt wurde.rn
Resumo:
LRP1 modulates APP trafficking and metabolism within compartments of the secretory pathway The amyloid precursor protein (APP) is the parent protein to the amyloid beta peptide (Abeta) and is a central player in Alzheimer’s disease (AD) pathology. Abeta liberation depends on APP cleavage by beta- and gamma-secretases. To date, only a unilateral view of APP processing exists, excluding other proteins, which might be transported together and/or processed dependent on each other by the secretases described above. The low density lipoprotein receptor related protein 1 (LRP1) was shown to function as such a mediator of APP processing at multiple steps. Newly synthesized LRP1 can interact with APP, implying an interaction between these two proteins early in the secretory pathway. Therefore, we wanted to investigate whether LRP1 can mediate APP trafficking along the secretory pathway, and, if so, whether it affects APP processing. Indeed, we demonstrate that APP trafficking is strongly influenced by LRP1 transport through the endoplasmic reticulum (ER) and Golgi compartments. LRP1-constructs with ER- and Golgi-retention motifs (LRP-CT KKAA, LRP-CT KKFF) had the capacity to retard APP trafficking at the respective steps in the secretory pathway. Here, we provide evidence that APP metabolism occurs in close conjunction with LRP1 trafficking, highlighting a new role of lipoprotein receptors in neurodegenerative diseases. Increased AICD generation is ineffective in nuclear translocation and transcriptional activity A sequence of amyloid precursor protein (APP) cleavages gives rise to the APP intracellular domain (AICD) together with amyloid beta peptide (Abeta) and/or p3 fragment. One of the environmental factors identified favouring the accumulation of AICD appears to be a rise in intracellular pH. This accumulation is a result of an abrogated cleavage event and does not extend to other secretase substrates. AICD can activate the transcription of artificially expressed constructs and many downstream gene targets have been discussed. Here we further identified the metabolism and subcellular localization of the constructs used in this well documented gene reporter assay. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely that cleaved from C83. Furthermore, the AICD surplus is not transcriptionally active but rather remains membrane tethered and free in the cytosol where it interacts with Fe65. However, Fe65 is still essential in AICD mediated transcriptional transactivation although its exact role in this set of events is unclear.
Resumo:
The presence of damaged nucleobases in DNA can negatively influence transcription of genes. One of the mechanisms by which DNA damage interferes with reading of genetic information is a direct blockage of the elongating RNA polymerase complexes – an effect well described for bulky adducts induced by several chemical substances and UV-irradiation. However, other mechanisms must exist as well because many of the endogenously occurring non-bulky DNA base modifications have transcription-inhibitory properties in cells, whilstrnnot constituting a roadblock for RNA polymerases under cell free conditions. The inhibition of transcription by non-blocking DNA damage was investigated in this work by employing the reporter gene-based assays. Comparison between various types of DNA damage (UV-induced pyrimidine photoproducts, oxidative purine modifications induced by photosensitisation, defined synthetic modified bases such as 8-oxoguanine and uracil, and sequence-specific single-strand breaks) showed that distinct mechanisms of inhibition of transcription can be engaged, and that DNA repair can influence transcription of the affectedrngenes in several different ways.rnQuantitative expression analyses of reporter genes damaged either by the exposure of cells to UV or delivered into cells by transient transfection supported the earlier evidence that transcription arrest at the damage sites is the major mechanism for the inhibition of transcription by this kind of DNA lesions and that recovery of transcription requires a functional nucleotide excision repair gene Csb (ERCC6) in mouse cells. In contrast, oxidisedrnpurines generated by photosensitisation do not cause transcriptional blockage by a direct mechanism, but rather lead to transcriptional repression of the damaged gene which is associated with altered histone acetylation in the promoter region. The whole chain of events leading to transcriptional silencing in response to DNA damage remains to be uncovered. Yet, the data presented here identify repair-induced single-strand breaks – which arise from excision of damaged bases by the DNA repair glycosylases or endonucleases – as arnputative initiatory factor in this process. Such an indirect mechanism was supported by requirement of the 8-oxoguanine DNA glycosylase (OGG1) for the inhibition of transcription by synthetic 8-oxodG incorporated into a reporter gene and by the delays observed for the inhibition of transcription caused by structurally unrelated base modifications (8-oxoguanine and uracil). It is thereby hypothesized that excision of the modified bases could be a generalrnmechanism for inhibition of transcription by DNA damage which is processed by the base excision repair (BER) pathway. Further gene expression analyses of plasmids containing single-strand breaks or abasic sites in the transcribed sequences revealed strong transcription inhibitory potentials of these lesions, in agreement with the presumption that BER intermediates are largely responsible for the observed effects. Experiments with synthetic base modifications positioned within the defined DNA sequences showed thatrninhibition of transcription did not require the localisation of the lesion in the transcribed DNA strand; therefore the damage sensing mechanism has to be different from the direct encounters of transcribing RNA polymerase complexes with DNA damage.rnAltogether, this work provides new evidence that processing of various DNA basernmodifications by BER can perturb transcription of damaged genes by triggering a gene silencing mechanism. As gene expression can be influenced even by a single DNA damage event, this mechanism could have relevance for the endogenous DNA damage induced in cells under normal physiological conditions, with a possible link to gene silencing in general.