2 resultados para Processus de substitution

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until today, autogenic bone grafts from various donor regions represent the gold standard in the field of bone reconstruction, providing both osteoinductive and osteoconductive characteristics. However, due to low availability and a disequilibrium between supply and demand, the risk of disease transfer and morbidity, usually associated with autogeneic bone grafts, the development of biomimic materials with structural and chemical properties similar to those of natural bone have been extensively studied. So far,rnonly a few synthetic materials, so far, have met these criteria, displaying properties that allow an optimal bone reconstitution. Biosilica is formed enzymatically under physiological-relevant conditions (temperature and pH) via silicatein (silica protein), an enzyme that was isolated from siliceous sponges, cloned, and prepared in a recombinant way, retaining its catalytic activity. It is biocompatible, has some unique mechanical characteristics, and comprises significant osteoinductive activity.rnTo explore the application of biosilica in the fields of regenerative medicine,rnsilicatein was encapsulated, together with its substrate sodium metasilicate, into poly(D,L-lactide)/polyvinylpyrrolidone(PVP)-based microspheres, using w/o/wrnmethodology with solvent casting and termed Poly(D,L-lactide)-silicatein silicacontaining-microspheres [PLASSM]. Both silicatein encapsulation efficiency (40%) and catalytic activity retention upon polymer encapsulation were enhanced by addition of an essential pre-emulsifying step using PVP. Furthermore, the metabolic stability, cytoxicity as well as the kinetics of silicatein release from the PLASSM were studied under biomimetic conditions, using simulated body fluid. As a solid support for PLASSM, a polyvinylpyrrolidone/starch/Na2HPO4-based matrix (termed plastic-like filler matrix containing silicic acid [PMSA]) was developed and its chemical and physical properties determined. Moreover, due to the non-toxicity and bioinactivity of the PMSA, it is suggested that PMSA acts as osteoconductive material. Both components, PLASSM and PMSA, when added together, form arnbifunctional 2-component implant material, that is (i)non-toxic(biocompatible), (ii)moldable, (iii) self-hardening at a controlled and clinically suitable rate to allows a tight insertion into any bone defect (iv) biodegradable, (v)forms a porous material upon exposure to body biomimetic conditions, and (vi)displays both osteoinductive (silicatein)and osteoconductive (PMSA) properties.rnPreliminary in vivo experiments were carried out with rabbit femurs, by creatingrnartificial bone defects that were subsequently treated with the bifunctional 2-component implant material. After 9 weeks of implantation, both computed tomography (CT) and morphological analyses showed complete resorption of the implanted material, concurrent with complete bone regeneration. The given data can be considered as a significant contribution to the successful introduction of biosilica-based implants into the field of bone substitution surgery.