2 resultados para Process of conversion

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die salpetrige Säure (HONO) ist eine der reaktiven Stickstoffkomponenten der Atmosphäre und Pedosphäre. Die genauen Bildungswege von HONO, sowie der gegenseitige Austausch von HONO zwischen Atmosphäre und Pedosphäre sind noch nicht vollständig aufgedeckt. Bei der HONO-Photolyse entsteht das Hydroxylradikal (OH) und Stickstoffmonooxid (NO), was die Bedeutsamkeit von HONO für die atmosphärische Photochemie widerspiegelt.rnUm die genannte Bildung von HONO im Boden und dessen anschließenden Austausch mit der Atmosphäre zu untersuchen, wurden Messungen von Bodenproben mit dynamischen Kammern durchgeführt. Im Labor gemessene Emissionsflüsse von Wasser, NO und HONO zeigen, dass die Emission von HONO in vergleichbarem Umfang und im gleichen Bodenfeuchtebereich wie die für NO (von 6.5 bis 56.0 % WHC) stattfindet. Die Höhe der HONO-Emissionsflüsse bei neutralen bis basischen pH-Werten und die Aktivierungsenergie der HONO-Emissionsflüsse führen zu der Annahme, dass die mikrobielle Nitrifikation die Hauptquelle für die HONO-Emission darstellt. Inhibierungsexperimente mit einer Bodenprobe und die Messung einer Reinkultur von Nitrosomonas europaea bestärkten diese Theorie. Als Schlussfolgerung wurde das konzeptionelle Model der Bodenemission verschiedener Stickstoffkomponenten in Abhängigkeit von dem Wasserhaushalt des Bodens für HONO erweitert.rnIn einem weiteren Versuch wurde zum Spülen der dynamischen Kammer Luft mit erhöhtem Mischungsverhältnis von HONO verwendet. Die Messung einer hervorragend charakterisierten Bodenprobe zeigte bidirektionale Flüsse von HONO. Somit können Böden nicht nur als HONO-Quelle, sondern auch je nach Bedingungen als effektive Senke dienen. rnAußerdem konnte gezeigt werden, dass das Verhältnis von HONO- zu NO-Emissionen mit dem pH-Wert des Bodens korreliert. Grund könnte die erhöhte Reaktivität von HONO bei niedrigem pH-Wert und die längere Aufenthaltsdauer von HONO verursacht durch reduzierte Gasdiffusion im Bodenporenraum sein, da ein niedriger pH-Wert mit erhöhter Bodenfeuchte am Maximum der Emission einhergeht. Es konnte gezeigt werden, dass die effektive Diffusion von Gasen im Bodenporenraum und die effektive Diffusion von Ionen in der Bodenlösung die HONO-Produktion und den Austausch von HONO mit der Atmosphäre begrenzen. rnErgänzend zu den Messungen im Labor wurde HONO während der Messkampagne HUMPPA-COPEC 2010 im borealen Nadelwald simultan in der Höhe von 1 m über dem Boden und 2 bis 3 m über dem Blätterdach gemessen. Die Budgetberechnungen für HONO zeigen, dass für HONO sämtliche bekannte Quellen und Senken in Bezug auf die übermächtige HONO-Photolyserate tagsüber vernachlässigbar sind (< 20%). Weder Bodenemissionen von HONO, noch die Photolyse von an Oberflächen adsorbierter Salpetersäure können die fehlende Quelle erklären. Die lichtinduzierte Reduktion von Stickstoffdioxid (NO2) an Oberflächen konnte nicht ausgeschlossen werden. Es zeigte sich jedoch, dass die fehlende Quelle stärker mit der HONO-Photolyserate korreliert als mit der entsprechenden Photolysefrequenz, die proportional zur Photolysefrequenz von NO2 ist. Somit lässt sich schlussfolgern, dass entweder die Photolyserate von HONO überschätzt wird oder dass immer noch eine unbekannte, HONO-Quelle existiert, die mit der Photolyserate sehr stark korreliert. rn rn