8 resultados para Population genetic
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Der Fokus dieser Dissertation ist die populationsgenetische Analyse der neolithischen Bevölkerungswechsel in den 6.-5. Jahrtausende vor Christus, die im westlichen Karpatenbecken stattfanden. Die Zielsetzung der Studie war, mittels der Analyse von mitochondrialer und Y-chromosomaler aDNA, den Genpool der sechs neolithischen und kupferzeitlichen Populationen zu untersuchen und die daraus resultierenden Ergebnisse mit anderen prähistorischen und modernen genetischen Daten zu vergleichen.rnInsgesamt wurden 323 Individuen aus 32 ungarischen, kroatischen und slowakischen Fundplätzen beprobt und bearbeitet in den archäogenetischen Laboren der Johannes Gutenberg-Universität in Mainz. Die DNA Ergebnisse wurden mit verschiedenen populationsgenetischen Methoden ausgewertet. Vergleichsdaten von prähistorischen und modernen eurasiatischen Populationen wurden dazu gesammelt.rnDie HVS-I Region der mitochondrialen DNA konnten bei 256 Individuen reproduziert und authentifiziert werden (mit einer Erfolgsrate von 85.9%). Die Typisierung der HVS-II Region war in 80 Fällen erfolgreich. Testend alle gut erhaltene Proben, die Y-chromosomale Haplogruppe konnte in 33 männlichen Individuen typisiert werden.rnDie neolithischen, mitochondrialen Haplogruppen deuten auf eine hohe Variabilität des maternalen Genpools hin. Sowohl die mitochondrialen als auch die Y-chromosomalen Daten lassen Rückschlüsse auf eine nah-östliche bzw. südwestasiatische Herkunft der frühen Bauern zu. Die Starčevo- und linearbandkermaischen-Populationen in westlichem Karpatenbecken (letztere abgekürzt als LBKT) und die linearbandkermaischen-Population in Mitteleuropa (LBK) haben so starke genetische Ähnlichkeit, dass die Verbreitung der LBK nach Mitteleuropa mit vorangegangenen Wanderungsereignissen zu erklären ist. Die Transdanubische aDNA Daten zeigen hohe Affinität zu den publizierten prähistorischen aDNA Datensätzen von Mitteleuropa aus den 6.-4. Jahrtausende vor Chr. Die maternal-genetische Variabilität der Starčevo-Population konnte auch innerhalb der nachfolgenden Populationen Transdanubiens festgestellt werden. Nur kleinere Infiltrationen und Immigrationsereignissen konnten während der Vinča-, LBKT-, Sopot- und Balaton-Lasinja-Kultur in Transdanubien identifiziert werden. Zwischen den transdanubischen Regionen konnten mögliche genetische Unterschiede nur in der LBKT und in der Lengyel-Periode beobachtet werden, als sich die nördlichen Gruppen von den südlichen Populationen trennten. rnDie festgestellte Heterogenität der mtDNA in Zusammenhang mit der Y-chromosomalen Homogenität in den Starčevo- und LBK-Populationen, weisen auf patrilokale Residenzregeln und patrilineare Abstammungsregeln in den ersten Bauergemeinschaften hin. rnObwohl die hier präsentierten Daten einen großen Fortschritt in der Forschung von aDNA und Neolithikum des Karpatenbeckens und Mitteleuropas bedeuten, werfen sie auch mehrere Fragen auf, deren Beantwortung durch zukünftige Genomforschungen erbracht werden könnte.
Resumo:
Toxicant inputs from agriculture, industry and human settlements have been shown to severely affect freshwater ecosystems. Pollution can lead to changes in population genetic patterns through various genetic and stochastic processes. In my thesis, I investigated the impact of anthropogenic stressors on the population genetics of the zebra mussel Dreissena polymorpha. In order to analyze the genetics of zebra mussel populations, I isolated five new highly polymorphic microsatellite loci. Out of those and other already existing microsatellite markers for this species, I established a robust marker set of six microsatellite loci for D. polymorpha. rnMonitoring the biogeographical background is an important requirement when integrating population genetic measures into ecotoxicological studies. I analyzed the biogeographical background of eleven populations in a section of the River Danube (in Hungary and Croatia) and some of its tributaries, and another population in the River Rhine as genetic outgroup. Moreover, I measured abiotic water parameters at the sampling sites and analyzed if they were correlated with the genetic parameters of the populations. The genetic differentiation was basically consistent with the overall biogeographical history of the populations in the study region. However, the genetic diversity of the populations was not influenced by the geographical distance between the populations, but by the environmental factors oxygen and temperature and also by other unidentified factors. I found strong evidence that genetic adaptation of zebra mussel populations to local habitat conditions had influenced the genetic constitution of the populations. Moreover, by establishing the biogeographical baseline of molecular variance in the study area, I laid the foundation for interpreting population genetic results in ecotoxicological experiments in this region.rnIn a cooperation project with the Department of Zoology of the University of Zagreb, I elaborated an integrated approach in biomonitoring with D. polymorpha by combining the analysis techniques of microsatellite analysis, Comet assay and micronucleus test (MNT). This approach was applied in a case study on freshwater contamination by an effluent of a wastewater treatment plant (WWTP) in the River Drava (Croatia) and a complementary laboratory experiment. I assessed and compared the genetic status of two zebra mussel populations from a contaminated and a reference site. Microsatellite analysis suggested that the contaminated population had undergone a genetic bottleneck, caused by random genetic drift and selection, whereas a bottleneck was not detected in the reference population. The Comet assay did not indicate any difference in DNA damage between the two populations, but MNT revealed that the contaminated population had an increased percentage of micronuclei in hemocytes in comparison to the reference population. The laboratory experiment with mussels exposed to municipal wastewater revealed that mussels from the contaminated site had a lower percentage of tail DNA and a higher percentage of micronuclei than the reference population. These differences between populations were probably caused by an overall decreased fitness of mussels from the contaminated site due to genetic drift and by an enhanced DNA repair mechanism due to adaptation to pollution in the source habitat. Overall, the combination of the three biomarkers provided sufficient information on the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization.rnIn my thesis, I could show that the newly established marker set of six microsatellite loci provided reliable and informative data for population genetic analyses of D. polymorpha. The adaptation of the analyzed zebra mussel populations to the local conditions of their habitat had a strong influence on their genetic constitution. We found evidence that the different genetic constitutions of two populations had influenced the outcome of our ecotoxicological experiment. Overall, the integrated approach in biomonitoring gave comprehensive information about the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization and was well practicable in a first case study.
Resumo:
Linear dispersal systems, such as coastal habitats, are well suited for phylogeographic studies because of their low spatial complexity compared to three dimensional habitats. Widely distributed coastal plant species additionally show azonal and often essentially continuous distributions. These properties, firstly, make it easier to reconstruct historical distributions of coastal plants and, secondly, make it more likely that present distributions contain both Quaternary refugia and recently colonized areas. Taken together this makes it easier to formulate phylogeographic hypotheses. This work investigated the phylogeography of Cakile maritima and Eryngium maritimum, two species growing in sandy habitats along the north Atlantic Ocean and the Mediterranean Sea coasts on two different spatial scales using AFLP data. The genetic structure of these species was investigated by sampling single individuals along most of their distributions from Turkey to south Sweden. On a regional scale the population genetic structure of both species was also studied in detail in the Bosporus and Dardanelles straits, the Strait of Gibraltar and along a continuous stretch of dunes in western France. Additionally, populations of C. maritima were investigated in the Baltic Sea/Kattegat/North Sea area. Over the complete sampling range the species show both differences and similarities in their genetic structure. In the Mediterranean Sea, both species contain Aegean Sea/Black Sea and west Mediterranean clusters. Cakile maritima additionally shows a clustering of Ionian Sea/Adriatic Sea collections. Further, both species show a subdivision of Atlantic Ocean/North Sea/Baltic Sea material from Mediterranean. Within the Atlantic Ocean group, C. maritima from the Baltic Sea and the most northern Atlantic localities form an additional cluster while no such substructure was found in E. maritimum. In all three instances where population genetic investigations of both species were performed in the same area, the results showed almost complete congruency of spatial genetic patterns. In the Aegean/Black Sea/Marmara region a subdivision of populations into a Black Sea, a Sea of Marmara and an Aegean Sea group is shared by both species. In addition the Sea of Marmara populations are more close to the Aegean Sea populations than they are to the Black Sea populations in both cases. Populations from the Atlantic side of the Strait of Gibraltar are differentiated from those on the Mediterranean side in both species, a pattern that confirms the results of the wide scale study. Along the dunes of West France no clear genetic structure could be detected in any of the species. Additionally, the results from the Baltic Sea/North Sea populations of C. maritima did not reveal any geographical genetic pattern. It is postulated that the many congruencies between the species are mainly due to a predominantly sea water mediated seed dispersal in both species and their shared sandy habitat. The results are compared to hypothetical distributions for the last glacial maximum based on species specific temperature requirements. It is argued that in both species the geographical borders of the clusters in the Mediterranean area were not affected by quaternary temperature changes and that the Aegean/Black Sea/Marmara cluster, and possibly the Ionian Sea/Adriatic Sea cluster in C. maritima, is the result of sea currents that isolate these basins from the rest of the sampled areas. The genetic gap in the Strait of Gibraltar between Atlantic Ocean and Mediterranean Sea populations in both species is also explained in terms of sea currents. The existence of three subgroups corresponding to the Aegean Sea, Black Sea and Sea of Marmara basins is suggested to have arisen due to geographical isolation during periods of global sea regressions in the glacials. The population genetic evidence was inconclusive regarding the Baltic Sea cluster of C. Maritima from the wide scale study. The results of this study are very similar to those of an investigation of three other coastal plant species over a similar range. This suggests that the phylo-geographic patterns of widespread coastal plants may be more predictable than those of other terrestrial plants.
Resumo:
Aim: Previous studies revealed that diversification events in the western clade of the alpine Primula sect. Auricula were concentrated in the Quaternary cold periods. This implies that allopatric speciation in isolated glacial refugia was the most common mode of speciation. In the first part of the present dissertation, this hypothesis is further investigated by locating refugial areas of two sister species, Primula marginata & P. latifolia during the last glacial maximum, 21,000 years ago. In the second part, the glacial and postglacial history of P. hirsuta and P. daonensis is investigated. Location: European Alps. Methods: Glacial refugia were located using species distribution models, which are projected to last glacial maximum climate. These refugia are validated with geographic distribution patterns of intra-specific genetic diversity, rarity and variation. Results 1) Speciation: Glacial refugia of the sister taxa Primula marginata and P. latifolia were largely separated, only a small overlapping zone at the southern margin of the former glacier in the Maritime Alps exists. This overlapping zone is too small to indicate sympatric speciation. The largely separated glacial distribution of both species rather confirms our hypothesis of allopatric speciation in isolated glacial refugia. Results 2) Glacial and postglacial history: Surprizingly, the modelled potential refugia of three out of four Primula species are situated within the former ice-shield, except for P. marginata. This indicates that peripheral and central nunataks played an important role for the glacial survival in P. latifolia, P. hirsuta and P. daonensis, while peripheral refugia outside the maximum extend of the glacier were crucial in P. marginata. In P. hirsuta and P. latifolia SDMs allowed to exclude several hypothetical refugial areas that overlap with today’s distribution as potential refugia for the species. In P. marginata, hypothetical refugial areas at the periphery of the former ice-shield that overlap with today’s distribution were confirmed by the models. The results from the SDMs are confirmed by population genetic patterns in three out of four species. P. daonensis represents an exception, where population genetic data contradict the SDMs. Main conclusions: Species distribution models provide species specific scenarios of glacial distribution and postglacial re-colonization, which can be validated using population genetic analyses. This combined approach is useful and helps to understand the complex processes that have lead to the genetic and floristic patterns of biodiversity that is found today in the Alps.
Resumo:
The distribution pattern of European arctic-alpine disjunct species is of growing interest among biogeographers due to the arising variety of inferred demographic histories. In this thesis I used the co-distributed mayfly Ameletus inopinatus and the stonefly Arcynopteryx compacta as model species to investigate the European Pleistocene and Holocene history of stream-inhabiting arctic-alpine aquatic insects. I used last glacial maximum (LGM) species distribution models (SDM) to derive hypotheses on the glacial survival during the LGM and the recolonization of Fennoscandia: 1) both species potentially survived glacial cycles in periglacial, extra Mediterranean refugia, and 2) postglacial recolonization of Fennoscandia originated from these refugia. I tested these hypotheses using mitochondrial sequence (mtCOI) and species specific microsatellite data. Additionally, I used future SDM to predict the impact of climate change induced range shifts and habitat loss on the overall genetic diversity of the endangered mayfly A. inopinatus.rnI observed old lineages, deep splits, and almost complete lineage sorting of mtCOI sequences between mountain ranges. These results support the hypothesis that both species persisted in multiple periglacial extra-Mediterranean refugia in Central Europe during the LGM. However, the recolonization of Fennoscandia was very different between the two study species. For the mayfly A. inopinatus I found strong differentiation between the Fennoscandian and all other populations in sequence and microsatellite data, indicating that Fennoscandia was recolonized from an extra European refugium. High mtCOI genetic structure within Fennoscandia supports a recolonization of multiple lineages from independent refugia. However, this structure was not apparent in the microsatellite data, consistent with secondary contact without sexual incompability. In contrast, the stonefly A. compacta exhibited low genetic structure and shared mtCOI haplotypes among Fennoscandia and the Black Forest, suggesting a shared Pleistocene refugium in the periglacial tundrabelt. Again, there is incongruence with the microsatellite data, which could be explained with ancestral polymorphism or female-biased dispersal. Future SDM projects major regional habitat loss for the mayfly A. inopinatus, particularly in Central European mountain ranges. By relating these range shifts to my population genetic results, I identified conservation units primarily in Eastern Europe, that if preserved would maintain high levels of the present-day genetic diversity of A. inopinatus and continue to provide long-term suitable habitat under future climate warming scenarios.rnIn this thesis I show that despite similar present day distributions the underlying demographic histories of the study species are vastly different, which might be due to differing dispersal capabilities and niche plasticity. I present genetic, climatic, and ecological data that can be used to prioritize conservation efforts for cold-adapted freshwater insects in light of future climate change. Overall, this thesis provides a next step in filling the knowledge gap regarding molecular studies of the arctic-alpine invertebrate fauna. However, there is continued need to explore the phenomenon of arctic-alpine disjunctions to help understand the processes of range expansion, regression, and lineage diversification in Europe’s high latitude and high altitude biota.
Resumo:
Vorliegende Dissertation beschäftigt sich mit der Populationsgenetik eisenzeitlicher Bevölkerungen der Eurasischen Steppe, die mit der skythischen Kultur assoziiert werden. Für die Analysen wurden 30 Fragmente der kodierenden Region und die HVR1 (16040–16400) des mitochondrialen Genoms, sowie 20 phänotypische Marker untersucht. Die Marker wurden durch Multiplex-PCRs angereichert, mit einem probenspezifischen barcode versehen und einer parallelen Sequenzanalyse mit dem 454 GS FLX Sequenzierer unterzogen. 97 Individuen wurden erfolgreich analysiert, von denen 19 aus dem Westen der Eurasischen Steppe und 78 aus dem Bereich des Altai-Gebirges stammen. Die populationsgenetischen Analysen ergaben geringe genetische Distanzen zwischen den skythischen Populationen aus dem Bereich des Altai-Gebirges, die sich vom 9. bis zum 3. Jahrhundert vor Christus erstrecken, was für eine kontinuierliche Bevölkerungsentwicklung sprechen könnte. Weiterhin finden sich geringe genetische Distanzen zwischen den Gruppen im Osten und Westen der Eurasischen Steppe, was auf eine gemeinsame Ursprungspopulation, oder zumindest Genfluss hinweisen kann. Die Ergebnisse aus dem Vergleich mit neolithischen und bronzezeitlichen Referenzpopulationen aus Zentralasien und den angrenzenden Gebieten weisen auf die Möglichkeit eines gemeinsamen zentral-asiatischen Ursprungs hin, zeigen aber auch, dass die östlichen und westlichen Gruppen der Eisenzeit jeweils zusätzlich lokalem Genfluss ausgesetzt waren. Die Allelfrequenzen der phänotypischen Marker deuten auf einen größeren europäischen Einfluss auf das östliche Zentralasien in der Eisenzeit hin, oder ansteigenden Genfluss aus Ostasien nach der Eisenzeit.
A river runs through it - ancient DNA data on the neolithic populations of the Great Hungarian Plain
Resumo:
This thesis was part of a multidisciplinary research project funded by the German Research Foundation (“Bevölkerungsgeschichte des Karpatenbeckens in der Jungsteinzeit und ihr Einfluss auf die Besiedlung Mitteleuropas”, grant no. Al 287/10-1) aimed at elucidating the population history of the Carpathian Basin during the Neolithic. The Carpathian Basin was an important waypoint on the spread of the Neolithic from southeastern to central Europe. On the Great Hungarian Plain (Alföld), the first farming communities appeared around 6000 cal BC. They belonged to the Körös culture, which derived from the Starčevo-Körös-Criş complex in the northern Balkans. Around 5600 cal BC the Alföld-Linearbandkeramik (ALBK), so called due to its stylistic similarities with the Transdanubian and central European LBK, emerged in the northwestern Alföld. Following a short “classical phase”, the ALBK split into several regional subgroups during its later stages, but did not expand beyond the Great Hungarian Plain. Marking the beginning of the late Neolithic period, the Tisza culture first appeared in the southern Alföld around 5000 cal BC and subsequently spread into the central and northern Alföld. Together with the Herpály and Csőszhalom groups it was an integral part of the late Neolithic cultural landscape of the Alföld. Up until now, the Neolithic cultural succession on the Alföld has been almost exclusively studied from an archaeological point of view, while very little is known about the population genetic processes during this time period. The aim of this thesis was to perform ancient DNA (aDNA) analyses on human samples from the Alföld Neolithic and analyse the resulting mitochondrial population data to address the following questions: is there population continuity between the Central European Mesolithic hunter-gatherer metapopulation and the first farming communities on the Alföld? Is there genetic continuity from the early to the late Neolithic? Are there genetic as well as cultural differences between the regional groups of the ALBK? Additionally, the relationships between the Alföld and the neighbouring Transdanubian Neolithic as well as other European early farming communities were evaluated to gain insights into the genetic affinities of the Alföld Neolithic in a larger geographic context. 320 individuals were analysed for this study; reproducible mitochondrial haplogroup information (HVS-I and/or SNP data) could be obtained from 242 Neolithic individuals. According to the analyses, population continuity between hunter-gatherers and the Neolithic cultures of the Alföld can be excluded at any stage of the Neolithic. In contrast, there is strong evidence for population continuity from the early to the late Neolithic. All cultural groups on the Alföld were heavily shaped by the genetic substrate introduced into the Carpathian Basin during the early Neolithic by the Körös and Starčevo cultures. Accordingly, genetic differentiation between regional groups of the ALBK is not very pronounced. The Alföld cultures are furthermore genetically highly similar to the Transdanubian Neolithic cultures, probably due to common ancestry. In the wider European context, the Alföld Neolithic cultures also highly similar to the central European LBK, while they differ markedly from contemporaneous populations of the Iberian Peninsula and the Ukraine. Thus, the Körös culture, the ALBK and the Tisza culture can be regarded as part of a “genetic continuum” that links the Neolithic Carpathian Basin to central Europe and likely has its roots in the Starčevo -Körös-Criş complex of the northern Balkans.
Resumo:
Pollination and seed dispersal are important ecological processes for the regeneration of plant populations and both vectors for gene exchange between plant populations. For my thesis, I studied the pollination ecology of the South African tree Commiphora harveyi (Burseraceae) and compared it with C. guillauminii from Madagascar. Both species have low visitation rates and a low number of pollinating insect species, resulting in a low fruit set. While their pollination ecology is very similar, they differ in their seed dispersal with a low seed dispersal rate in the Malagasy and a high seed dispersal rate in the South African species. This should be reflected in a stronger genetic differentiation among populations in the Malagasy than in the South African species. My results, based on AFLP markers, contradict these expectations, the overall differentiation was lower in the Malagasy (FST = 0.05) than in the South African species (FST = 0.16). However, at a smaller spatial scale (below 3 km), the Malagasy species was genetically more strongly differentiated than the South African species, which was reflected by the high inter-population variance within the sample site (C. guillauminii: 72.2 - 85.5 %; C. harveyi: 8.4 - 14.5 %). This strong differentiation could arise from limited gene flow, which was confirmed by spatial autocorrelation analyses. The shape of the autocorrelogram suggested that gene exchange between individuals occurred only up to 3 km in the Malagasy species, whereas up to 30 km in the South African species. These results on the genetic structure correspond to the expectations based on seed dispersal data. Thus, seed dispersal seems to be a key factor for the genetic structure in plant populations on a local scale.