5 resultados para Pollen Dispersal

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many plant species, the genetic template of early life-stages is formed by animal-mediated pollination and seed dispersal and has profound impact on further recruitment and population dynamics. Understanding the impact of pollination and seed dispersal on genetic patterns is a central issue in plant population biology. In my thesis, I investigated (i) contemporary dispersal and gene flow distances as well as (ii) genetic diversity and spatial genetic structure (SGS) across subsequent recruitment stages in a population of the animal-pollinated and dispersed tree Prunus africana in Kakamega Forest, West Kenya. Using microsatellite markers and parentage analyses, I inferred distances of pollen dispersal (father-to-mother), seed dispersal/maternal gene flow (mother-to-offspring) as well as paternal gene flow (father-to-offspring) for four early life stages of the species (seeds and fruits, current year seedlings, seedlings ≤ 3yr, seedlings > 3yr). Distances of pollen and seed dispersal as well as paternal gene flow were significantly shorter than expected from the spatial arrangement of trees and sampling plots. They were not affected by the density of conspecific trees in the surrounding. At the propagule stage, mean pollen dispersal distances were considerably (23-fold) longer than seed dispersal distances, and paternal gene flow distances exceeded maternal gene flow by a factor of 25. Seed dispersal distances were remarkably restricted, potentially leading to a strong initial SGS. The initial genetic template created by pollination and seed dispersal was extensively altered during later recruitment stages. Potential Janzen-Connell effects led to markedly increasing distances between offspring and both parental trees in older life stages. This showed that distance and density-dependent mortality factors are not exclusively related to the mother tree, but also to the father. Across subsequent recruitment stages, the pollen to seed dispersal ratio and the paternal to maternal gene flow ratio dropped to 2.1 and 3.4, respectively, in seedlings > 3yr. The relative changes in effective pollen dispersal, seed dispersal, and paternal gene flow distances across recruitment stages elucidate the mechanisms affecting the contribution of the two processes pollen and seed dispersal to overall gene flow. Using the same six microsatellite loci, I analyzed genetic diversity and SGS across five life stages, from seed rain to adults. Levels of genetic diversity within the studied P. africana population were comparable to other Prunus species and did not vary across life stages. In congruence with the short seed dispersal distances, I found significant SGS in all life stages. SGS decreased from seed and early seedling stages to older juvenile stages, and it was higher in adults than in late juveniles of the next generation. A comparison of the data with direct assessments of contemporary gene flow patterns indicate that distance- or density-dependent mortality, potentially due to Janzen-Connell effects, led to the initial decrease in SGS. Intergeneration variation in SGS could have been driven by variation in demographic processes, the effect of overlapping generations, and local selection processes. Overall, my study showed that complex sequential processes during recruitment contribute to the spatial genetic structure of tree populations. It highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal-mediated pollen and seed dispersal on spatial population dynamics and genetic patterns of trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollination and seed dispersal are important ecological processes for the regeneration of plant populations and both vectors for gene exchange between plant populations. For my thesis, I studied the pollination ecology of the South African tree Commiphora harveyi (Burseraceae) and compared it with C. guillauminii from Madagascar. Both species have low visitation rates and a low number of pollinating insect species, resulting in a low fruit set. While their pollination ecology is very similar, they differ in their seed dispersal with a low seed dispersal rate in the Malagasy and a high seed dispersal rate in the South African species. This should be reflected in a stronger genetic differentiation among populations in the Malagasy than in the South African species. My results, based on AFLP markers, contradict these expectations, the overall differentiation was lower in the Malagasy (FST = 0.05) than in the South African species (FST = 0.16). However, at a smaller spatial scale (below 3 km), the Malagasy species was genetically more strongly differentiated than the South African species, which was reflected by the high inter-population variance within the sample site (C. guillauminii: 72.2 - 85.5 %; C. harveyi: 8.4 - 14.5 %). This strong differentiation could arise from limited gene flow, which was confirmed by spatial autocorrelation analyses. The shape of the autocorrelogram suggested that gene exchange between individuals occurred only up to 3 km in the Malagasy species, whereas up to 30 km in the South African species. These results on the genetic structure correspond to the expectations based on seed dispersal data. Thus, seed dispersal seems to be a key factor for the genetic structure in plant populations on a local scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samenausbreitung und Regeneration von Bäumen sind wichtig für den langfristigen Bestand von Baum- und Frugivorengemeinschaften in tropischen Regenwäldern. Zunehmende Rohdung und Degradation gefährden den Ablauf dieser mutualistischen Prozesse in diesem Ökosystem. Um den Einfluss von kleinräumiger menschlicher Störung auf die Frugivorengemeinschaft und die zentralen Ökosystemprozesse Samenausbreitung und Regeneration zu erforschen, habe ich 1) die Frugivorengemeinschaft und die Samenausbreitungsrate von Celtis durandii (Ulmaceae) und 2) den Zusammenhang zwischen Baumarten mit fleischigen Früchten, Frugivoren und der Etablierung von Keimlingen dieser Baumarten in unterschiedlich stark gestörten Flächen dreier ostafrikanischer tropischer Regenwälder untersucht. Insgesamt konnte ich 40 frugivore Vogel- und Primatenarten in den drei untersuchten Waldgebieten nachweisen. Auf gering gestörten Flächen wurden mehr Frugivore als auf stark gestörten Flächen aufgenommen. Auch die Beobachtungen an C. durandii ergaben mehr frugivore Besucher in Bäumen auf gering gestörten als auf stark gestörten Flächen. Dies führte zu einer marginal signifikant höheren Samenausbreitungsrate auf den gering gestörten Flächen. Diese Ergebnisse waren auf regionaler Ebene in allen drei untersuchten Wäldern konsistent. Dies zeigt, dass kleinräumige Störung einen umfassenderen negativen Einfluss auf Frugivore und ihre Funktion als Samenausbreiter hat als zuvor angenommen. Bei der Vegetationserfassung nahm ich 131 verschiedene Baumarten mit fleischigen Früchten in den drei Regenwäldern auf. Kleinräumige menschliche Störung erhöhte den Artenreichtum dieser Baumarten marginal signifikant, hatte jedoch keinen direkten Einfluss auf die Frugivorendichte und den Artenreichtum von Keimlingen dieser Baumarten. Der Artenreichtum von Baumarten mit fleischigen Früchten zeigte einen marginal signifikant positiven Einfluss auf die Frugivorendichte, allerdings nicht auf die Keimlinge. Allerdings führte die Dichte der Frugivoren zu signifikant erhöhtem Artenreichtum der Keimlinge. Folglich scheint kleinräumige Störung die Keimlingsetablierung indirekt durch erhöhten Baumartenreichtum und erhöhte Frugivorendichte zu beeinflussen. Die Frugivorendichte hatte einen größeren Einfluss auf die Waldregeneration als kleinräumige Störung und Baumartenreichtum. Demnach scheint kleinräumige menschliche Störung sowohl positive als auch negative Effekte auf Samenausbreitung und Regeneration zu haben. Somit sind weitere Studien notwendig, die den Einfluss von kleinräumiger menschlicher Störung auf Mutualismen tropischer Regenwälder aufklären.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the quickest plant movements ever known is made by the ´explosive´ style in Marantaceae in the service of secondary pollen presentation – herewith showing a striking apomorphy to the sister Cannaceae that might be of high evolutionary consequence. Though known already since the beginning of the 19th century the underlying mechanism of the movement has hitherto not been clarified. The present study reports about the biomechanics of the style-staminode complex and the hydraulic principles of the movement. For the first time it is shown by experiment that in Maranta noctiflora through longitudinal growth of the maturing style in the ´straitjacket´ of the hooded staminode both the hold of the style prior to its release and its tensioning for the movement are brought about. The longer the style grows in relation to the enclosing hooded staminode the more does its capacity for curling up for pollen transfer increase. Hereby I distinguish between the ´basic tension´ that a growing style builds up anyway, even when the hooded staminode is removed beforehand, and the ´induced tension´ which comes about only under the pressure of a ´too short´ hooded staminode and which enables the movement. The results of these investigations are discussed in view of previous interpretations ranging from possible biomechanical to electrophysiological mechanisms. To understand furthermore by which means the style gives way to the strong bending movement without suffering outwardly visible damage I examined its anatomical structure in several genera for its mechanical and hydraulic properties and for the determination of the entire curvature after release. The actual bending part contains tubulate cells whose walls are extraordinarily porous and large longitudinal intercellular spaces. SEM indicates the starting points of cell-wall loosening in primary walls and lysis of middle lamellae - probably through an intense pectinase activity in the maturing style. Fluorescence pictures of macerated and living style-tissue confirm cell-wall perforations that do apparently connect neighbouring cells, which leads to an extremely permeable parenchyma. The ´water-body´ can be shifted from central to dorsal cell layers to support the bending. The geometrical form of the curvature is determined by the vascular bundles. I conclude that the style in Marantaceae contains no ´antagonistic´ motile tissues as in Mimosa or Dionaea. Instead, through self-maceration it develops to a ´hydraulic tissue´ which carries out an irreversible movement through a sudden reshaping. To ascertain the evolutionary consequence of this apomorphic pollination mechanism the diversity and systematic value of hooded staminodes are examined. For this hooded staminodes of 24 genera are sorted according to a minimalistic selection of shape characters and eight morphological types are abstracted from the resulting groups. These types are mapped onto an already available maximally parsimonious tree comprising five major clades. An amazing correspondence is found between the morphological types and the clades; several sister-relationships are confirmed and in cases of uncertain position possible evolutionary pathways, such as convergence, dispersal or re-migration, are discussed, as well as the great evolutionary tendencies for the entire family in which – at least as regards the shape of hooded staminodes – there is obviously a tendency from complicated to strongly simplified forms. It suggests itself that such simplifying derivations may very likely have taken place as adaptations to pollinating animals about which at present too little is known. The value of morphological characters in relation to modern phylogenetic analysis is discussed and conditions for the selection of morphological characters valuable for a systematic grouping are proposed. Altogether, in view of the evolutionary success of Marantaceae compared with Cannaceae the movement mechanism of the style-staminode complex can safely be considered a key innovation within the order Zingiberales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation addresses the staminal lever mechanism of the genus Salvia. Various hypotheses referring to its purpose and function are tested and elucidated. The first hypothesis maintains that the lever is a mechanical selection mechanism which excludes weak pollinators from the flower. This hypothesis is refuted and the respective results of force measurements and morphological investigations are presented, statistically evaluated and discussed. The force measurements and morphological investigations were conducted on the staminal levers and flowers of 8 bee pollinated (melittophilous) and 6 bird pollinated (ornithophilous) species. For comparison a ninth melittophilous species that lacks the staminal lever was investigated. In this species the force measurements were conducted on floral structures that were suspected to hinder a flower visitor. The hypotheses, which state that the staminal lever is a tool for pollen portioning and reduces the risk of pollen loss as well as hybridisation due to its ability to perform a repeatable, accurate and species-specific pollen placement on a wide range of diverse pollinators, are confirmed. Investigations with respect to pollen portioning were carried out on 13 sages. The lever mechanism can be released several times in a row, while the pollen sacs leave a dosed pollen portion on a well defined spot on the pollinator‘s body. Pollen placement was investigated for 12 sages. In sympatric sages, lever length and the area of pollen placement are of particular interest. A shared pollinator bears species-specific areas of pollen placement for different sages. The accurate pollen placement ensures an efficient pollination. However, the question of the functionality of the lever mechanism can not be answered with absolute certainty. The lever‘s backswing is not caused by the adaxial lever arm; the adaxial lever arm is too light and too short to be an adequate counterweight to the abaxial lever arm. Therefore, the adaxial lever arm can not pull the abaxial lever arm to return it to its neutral position. But there are indications of a cellular mainspring in the filament. According to the current state of knowledge, this is the most plausible explanation for the lever's backswing, but further histological investigations on the joint of the lever mechanism are necessary to confirm this assumption.