3 resultados para Plant-pathogen interaction
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Anthropogene Fragmentierung und Störung von Wäldern beeinflussen ökologische Prozesse. Darüber hinaus werden genetische Drift und Inzucht verstärkt und die Fitness von Populationen beeinträchtigt. Um die Einflüsse von Fragmentierung und Störung auf die Biodiversität und Prozesse in tropischen Wäldern zu ermitteln, habe ich im „Kakamega Forest“, West-Kenia, die Baumart Prunus africana genauer untersucht. Dabei lag der Fokus auf (i) der Frugivorengemeinschaft und Samenausbreitung, (ii) der Kleinsäugergemeinschaft im Kontext der Samenprädation und (iii) der genetische Populationsstruktur von Keimlingen und adulten Bäumen. Der Vergleich von Keimlingen mit adulten Bäumen ermöglicht es, Veränderungen im Genfluss zwischen Generationen festzustellen. Die Ergebnisse zeigten, dass im untersuchten Waldgebiet insgesamt 49 frugivore Arten (Affen und Vögel) vorkommen. Dabei lag die Gesamtartenzahl im zusammenhängenden Wald höher als in den isoliert liegenden Fragmenten. An den Früchten von P. africana konnten insgesamt 36 Arten fressend beobachtet werden. Hier jedoch wurden in Fragmenten eine leicht erhöhte Frugivorenzahl sowie marginal signifikant erhöhte Samenausbreitungsraten nachgewiesen. Der Vergleich von stark gestörten mit weniger gestörten Flächen zeigte eine höhere Gesamtartenzahl sowie eine signifikant höhere Frugivorenzahl in P. africana in stark gestörten Flächen. Entsprechend war die Samenausbreitungsrate in stark gestörten Flächen marginal signifikant erhöht. Diese Ergebnisse deuten darauf hin, dass die quantitative Samenausbreitung in fragmentierten und gestörten Flächen etwas erhöht ist und somit eine gewisse Artenredundanz besteht, die den Verlust einzelner Arten ausgleichen könnte. Prunus africana Samen, die auf dem Boden lagen, wurden hauptsächlich von einer Nagerart (Praomys cf. jacksonii) erbeutet. Dabei war in gestörten Waldbereichen eine tendenziell höhere Prädatoraktivität zu beobachten als in weniger gestörten. Zudem waren einzelne Samen im Gegensatz zu Samengruppen in gestörten Flächen signifikant höherem Prädationsdruck ausgesetzt. Diese Ergebnisse zeigen, dass Fragmentierung sowie anthropogene Störungen auf unterschiedliche Prozesse im Lebenszyklus eines tropischen Baumes gegensätzliche Effekte haben können. Eine Extrapolation von einem auf einen anderen Prozess kann somit nicht erfolgen. Die genetische Differenzierung der adulten Baumpopulationen war gering (FST = 0.026). Der Großteil ihrer Variation (~ 97 %) lag innerhalb der Populationen, was intensiven Genfluss in der Vergangenheit widerspiegelt. Die genetische Differenzierung der Keimlinge war etwas erhöht (FST = 0.086) und ~ 91 % ihrer Variation lag innerhalb der Populationen. Im Gegensatz zu den adulten Bäumen konnte ich für Keimlinge ein „Isolation-by-distance“-Muster feststellen. Somit sind erste Hinweise auf begrenzten Genfluss im Keimlingsstadium infolge von Fragmentierung gegeben. Obwohl die Momentaufnahmen im Freiland keine Abnahme in der Frugivorenzahl und Samenausbreitung von P. africana als Folge von Fragmentierung beobachten ließen, weisen die Ergebnisse der genetischen Studie auf einen bereits reduzierten Genaustausch zwischen den Populationen hin. Somit lässt sich feststellen, dass die Faktoren Fragmentierung und Störung genetische Diversität, ökologische Prozesse und Artendiversität in Wäldern jeweils auf unterschiedliche Weise beeinflussen. Um Konsequenzen derartiger Einflüsse folgerichtig abschätzen zu können, sind Studien auf unterschiedlichen Diversitätsebenen unabdingbar.
Gene expression analysis in ‘Candidatus Phytoplasma mali’-resistant and -susceptible Malus genotypes
Resumo:
Apple proliferation (AP) disease is the most important graft-transmissible and vector-borne disease of apple in Europe. ‘Candidatus Phytoplasma mali’ (Ca. P. mali) is the causal agent of AP. Apple (Malus x domestica) and other Malus species are the only known woody hosts. In European apple orchards, the cultivars are mainly grafted on one rootstock, M. x domestica cv. M9. M9 like all other M. x domestica cultivars is susceptible to ‘Ca. P. mali’. Resistance to AP was found in the wild genotype Malus sieboldii (MS) and in MS-derived hybrids but they were characterised by poor agronomic value. The breeding of a new rootstock carrying the resistant and the agronomic traits was the major aim of a project of which this work is a part. The objective was to shed light into the unknown resistance mechanism. The plant-phytoplasma interaction was studied by analysing differences between the ‘Ca. P. mali’-resistant and -susceptible genotypes related to constitutively expressed genes or to induced genes during infection. The cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique was employed in both approaches. Differences related to constitutively expressed genes were identified between two ‘Ca. P. mali’-resistant hybrid genotypes (4551 and H0909) and the ‘Ca. P. mali’-susceptible M9. 232 cDNA-AFLP bands present in the two resistant genotypes but absent in the susceptible one were isolated but several different products associated to each band were found. Therefore, two different macroarray hybridisation experiments were performed with the cDNA-AFLP fragments yielding 40 sequences encoding for genes of unknown function or a wide array of functions including plant defence. In the second approach, individuation and analysis of the induced genes was carried out exploiting an in vitro system in which healthy and ‘Ca. P. mali’-infected micropropagated plants were maintained under controlled conditions. Infection trials using in vitro grafting of ‘Ca. P. mali’ showed that the resistance phenotype could be reproduced in this system. In addition, ex vitro plants were generated as an independent control of the genes differentially expressed in the in vitro plants. The cDNA-AFLP analysis in in vitro plants yielded 63 bands characterised by over-expression in the infected state of both the H0909 and MS genotypes. The major part (37 %) of the associated sequences showed homology with products of unknown function. The other genes were involved in plant defence, energy transport/oxidative stress response, protein metabolism and cellular growth. Real-time qPCR analysis was employed to validate the differential expression of the genes individuated in the cDNA-AFLP analysis. Since no internal controls were available for the study of the gene expression in Malus, an analysis on housekeeping genes was performed. The most stably expressed genes were the elongation factor-1 α (EF1) and the eukaryotic translation initiation factor 4-A (eIF4A). Twelve out of 20 genes investigated through qPCR were significantly differentially expressed in at least one genotype either in in vitro plants or in ex vitro plants. Overall, about 20% of the genes confirmed their cDNA-AFLP expression pattern in M. sieboldii or H0909. On the contrary, 30 % of the genes showed down-regulation or were not differentially expressed. For the remaining 50 % of the genes a contrasting behaviour was observed. The qPCR data could be interpreted as follows: the phytoplasma infection unbalance photosynthetic activity and photorespiration down-regulating genes involved in photosynthesis and in the electron transfer chain. As result, and in contrast to M. x domestica genotypes, an up-regulation of genes of the general response against pathogens was found in MS. These genes involved the pathway of H2O2 and the production of secondary metabolites leading to the hypothesis that a response based on the accumulation of H2O2 in MS would be at the base of its resistance. This resembles a phenomenon known as “recovery” where the spontaneous remission of the symptoms is observed in old susceptible plants but occurring in a stochastic way while the resistance in MS is an inducible but stable feature. As additional product of this work three cDNA-AFLP-derived markers were developed which showed independent distribution among the seedlings of two breeding progenies and were associated to a genomic region characteristic of MS. These markers will contribute to the development of molecular markers for the resistance as well as to map the resistance on the Malus genome.
Resumo:
Das aus wissenschaftlicher und ökonomischer Sicht wichtigste Pflanzenpathogen M. oryzae entwickelte im Laufe der Evolution konservierte aber auch einzigartige Mechanismen zur Signaltransduktion. Das Erforschen dieser Mechanismen und Prozesse ist essenziell für das Verständnis von Differenzierungsprozessen bei der Pathogen-Wirt-Interaktion.rnIm ersten Teil der vorliegenden Arbeit wurde der Signalweg zur Osmoregulation, der „High Osmolarity Glycerol“ (HOG)-Signalweg, erstmals anhand physiologischer Experimente in entsprechenden Mutantenstämmen in M. oryzae untersucht. Dabei konnten klare Unter-schiede zum HOG-Signalweg von S. cerevisiae aufgezeigt werden. rnDas in M. oryzae bisher noch nicht beschriebene Gen MoYPD1, welches das Phosphotransferprotein MoYpd1p kodiert, wurde erfolgreich inaktiviert. Diese Inaktivierung ist in S. cerevisiae und vielen anderen Pilzen letal und resultierte bei M. oryzae in einer apathoge¬nen Albinomutante, deren Konidiogenese gestört ist. Insbesondere die Funktion des Phosphotransferproteins MoYpd1p, sowohl im Phosphorelaysystem des HOG-Signal¬wegs als auch im Wirkmechanismus des Fungizids Fludioxonil, konnte eindeutig mittels Y2H- und Western Blot-Analysen nachgewiesen werden.rnEs wurden entscheidende Fortschritte für das Verständnis des Aufbaus und der Funktion des HOG-Signalwegs sowohl als physiologisches Regulationssystem für Umweltreize als auch als Fungizidtarget im Pflanzenschutz erzielt. Dabei konnte gezeigt werden, dass die Zweikompo-nenten-Hybrid-Histidinkinase (HIK) MoSln1p als Signalsensor für Salzstress und MoHik1p als Signalsensor für Zuckerstress fungiert. Die Beteiligung der Histidinkinasen MoHik5p und MoHik9p als Sensorproteine für Hypoxie im HOG-Signalweg ist durchaus denk¬bar und wurde durch erste Ergebnisse bekräftigt. rnSo konnte der HOG-Signalweg in mehreren Modellen dargestellt werden. Die Modelle der Signalerkennung und –transduktion von osmotischem Stress, von Hypoxie und der Wirkmecha¬nismus von Fludioxonil wurden erstmals in diesem Umfang für M. oryzae ausgearbei¬tet.rnDer zweite Teil dieser Arbeit repräsentiert die erste umfassende Untersuchung aller zehn HIK-codierender Gensequenzen, die im Genom von M. oryzae identifiziert werden konnten. Diese Signalproteine waren bisher noch nicht Gegenstand wissenschaftlicher Studien. Die Untersuchung beginnt mit einer phylogenetischen Einordnung aller untersuchten Proteinsequen¬zen in die verschiedenen Gruppen von Histidinkinasen in Pilzen. Eine ausführli-che phänotypische Charakterisierung aller HIK-codierender Gene folgt und wurde anhand von Mutanten durchgeführt, in denen diese Gene einzeln inaktiviert wurden.rnDie Beteiligung von MoHik5p und MoHik9p als mögliche Sauerstoffsensoren im HOG-Signal-weg konnte dokumentiert werden und die anschließenden Western Blot-Analysen bestätig¬ten erstmals die Aktivierung des HOG-Signalwegs bei hypoxieähnlichen Zuständen.rnDes Weiteren wurden mit MoHik5p und MoHik8p zwei neue Pathogenitätsfaktoren in M. oryzae identifiziert. Die apathogenen Mutantenstämme ΔMohik5 und ΔMohik8 sind in der Konidiogenese gestört und nicht in der Lage Appressorien zu differenzieren. Der Einsatz dieser Proteine als Fungizidtarget im protektiven Pflanzenschutz in der Zukunft ist somit denk-bar.rn