5 resultados para Plane strain

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kurzzusammenfassung Produktion, Reinigung, Eigenschaften und Anwendung von Cellulasen eines Wildtyp-Hefeisolates. Die effiziente Verwendung von Cellulose wird in naher Zukonft ein wichtiges Instrument zur Vermeidung einer Nahrungsmittel- und Energieknappheit werden. Deshalb haben wir uns intensiv mit Cellulasen befaßt, die aus Hefestämmen isoliert wurden. Die Fähigkeit der Cellulase-produktion eines Hefe-Stammes der Feuerwanze Pyrrhocoris apterus wurde genauer untersucht. Die systematische Stellung des Hefe-Isolates PAG1 wurde durch Sequenzierung der 18S rDNA bestimmt. Es zeigte eine nahe Verwandtschaft zu einem bereits beschriebenen Stämme der Gattung Trichosporon. Außerdem wurden die Wachstums-bedingungen für eine optimale Cellulase–Produktion bestimmt. Anschließend konnte eine der produzierten Cellulasen mit FPLC aufgereinigt und deren biochemische Eigenschaften (z.B. Substratspezifität, Temperatur optimum, optimaler pH-Wert, Einfluß von Chemikalien) untersucht werden. Eine Analyse der Abbau-Produkte zeigte, daß kristalline Cellulose und CMC zu Cellobiose, Cellulotriose, Cellulotetraose und Cellulopentaose in einem molaren Verhältnis von 32:16:8:1 umgesetezt wurden. Bei Zusatz von ?-Glykosidase aus demselben Hefestamm entstand nur Glucose und Cellobiose in einem molaren Verhältnis von 1:10. Da bisher nur eine Publikation über Cellulase-produzierende Hefe-Stämme erschienen ist, zeigen auch unsere Untersuchungen, daß Wildtyp-Hefestämme Cellulasen mit interessanten Eigenschaften produzieren können.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite-strain study in the Gran Paradiso massif of the Italian Western Alps has been carried out to elucidate whether ductile strain shows a relationship to nappe contacts and to shed light on the nature of the subhorizontal foliation typical of the gneiss nappes in the Alps. The Rf/_ and Fry methods used on feldspar porphyroclasts from 143 augengneiss and 11 conglomerate samples of the Gran Paradiso unit (upper tectonic unit of the Gran Paradiso massif), as well as, 9 augengneiss (Erfaulet granite) and 3 quartzite conglomerate samples from the underlying Erfaulet unit (lower unit of the Gran Paradiso massif), and 1 sample from mica schist. Microstructures and thermobarometric data show that feldspar ductility at temperatures >~450°C occurred only during high-pressure metamorphism, when the rocks were underplated beneath the overriding Adriatic plate. Therefore, the finite-strain data can be related to high-pressure metamorphism in the Alpine subduction zone. The augen gneiss was heterogeneously deformed and axial ratios of the strain ellipse in XZ sections range from 2.1 to 69.8. The long axes of the finite-strain ellipsoids trend W/WNW and the short axes are subvertical associated with a subhorizontal foliation. The strain magnitudes do not increase towards the nappe contacts. Geochemical work shows that the accumulation of finite strain was not associated with any significant volume strain. Hence, the data indicate flattening strain type in the Gran Paradiso unit and constrictional strain type in the Erfaulet unit and prove deviations from simple shear. In addition, electron microprobe work was undertaken to determine if the analysed fabrics formed during high-P metamorphism. The chemistry of phengites in the studied samples suggests that deformation and final structural juxtaposition of the Gran Paradiso unit against the Erfaulet took place during high-pressure metamorphism. On the other hand, nappe stacking occurred early during subduction probably by brittle imbrication and that ductile strain was superimposed on and modified the nappe structure during high-pressure underplating in the Alpine subduction zone. The accumulation of ductile strain during underplating was not by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gran Paradiso massif. It is concluded that this foliation formed during thrusting of the nappes onto each other suggesting that nappe stacking was associated with vertical shortening. The primary evidence for this interpretation is an attenuated metamorphic section with high-pressure metamorphic rocks of the Gran Paradiso unit juxtaposed against the Erfaulet unit. Therefore, the exhumation during high-pressure metamorphism in the Alpine subduction zone involved a component of vertical shortening, which is responsible for the subhorizontal foliation within the nappes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical resonances of metallic nanoparticles placed at nanometer distances from a metal plane were investigated. At certain wavelengths, these “sphere-on-plane” systems become resonant with the incident electromagnetic field and huge enhancements of the field are predicted localized in the small gaps created between the nanoparticle and the plane. An experimental architecture to fabricate sphere-on-plane systems was successfully achieved in which in addition to the commonly used alkanethiols, polyphenylene dendrimers were used as molecular spacers to separate the metallic nanoparticles from the metal planes. They allow for a defined nanoparticle-plane separation and some often are functionalized with a chromophore core which is therefore positioned exactly in the gap. The metal planes used in the system architecture consisted of evaporated thin films of gold or silver. Evaporated gold or silver films have a smooth interface with their substrate and a rougher top surface. To investigate the influence of surface roughness on the optical response of such a film, two gold films were prepared with a smooth and a rough side which were as similar as possible. Surface plasmons were excited in Kretschmann configuration both on the rough and on the smooth side. Their reflectivity could be well modeled by a single gold film for each individual measurement. The film has to be modeled as two layers with significantly different optical constants. The smooth side, although polycrystalline, had an optical response that was very similar to a monocrystalline surface while for the rough side the standard response of evaporated gold is retrieved. For investigations on thin non-absorbing dielectric films though, this heterogeneity introduces only a negligible error. To determine the resonant wavelength of the sphere-on-plane systems a strategy was developed which is based on multi-wavelength surface plasmon spectroscopy experiments in Kretschmann-configuration. The resonant behavior of the system lead to characteristic changes in the surface plasmon dispersion. A quantitative analysis was performed by calculating the polarisability per unit area /A treating the sphere-on-plane systems as an effective layer. This approach completely avoids the ambiguity in the determination of thickness and optical response of thin films in surface plasmon spectroscopy. Equal area densities of polarisable units yielded identical response irrespective of the thickness of the layer they are distributed in. The parameter range where the evaluation of surface plasmon data in terms of /A is applicable was determined for a typical experimental situation. It was shown that this analysis yields reasonable quantitative agreement with a simple theoretical model of the sphere-on-plane resonators and reproduces the results from standard extinction experiments having a higher information content and significantly increased signal-to-noise ratio. With the objective to acquire a better quantitative understanding of the dependence of the resonance wavelength on the geometry of the sphere-on-plane systems, different systems were fabricated in which the gold nanoparticle size, type of spacer and ambient medium were varied and the resonance wavelength of the system was determined. The gold nanoparticle radius was varied in the range from 10 nm to 80 nm. It could be shown that the polyphenylene dendrimers can be used as molecular spacers to fabricate systems which support gap resonances. The resonance wavelength of the systems could be tuned in the optical region between 550 nm and 800 nm. Based on a simple analytical model, a quantitative analysis was developed to relate the systems’ geometry with the resonant wavelength and surprisingly good agreement of this simple model with the experiment without any adjustable parameters was found. The key feature ascribed to sphere-on-plane systems is a very large electromagnetic field localized in volumes in the nanometer range. Experiments towards a quantitative understanding of the field enhancements taking place in the gap of the sphere-on-plane systems were done by monitoring the increase in fluorescence of a metal-supported monolayer of a dye-loaded dendrimer upon decoration of the surface with nanoparticles. The metal used (gold and silver), the colloid mean size and the surface roughness were varied. Large silver crystallites on evaporated silver surfaces lead to the most pronounced fluorescence enhancements in the order of 104. They constitute a very promising sample architecture for the study of field enhancements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5,GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them.rnrnFor studying hypernuclear production in the ^A Z(e,e'K^+) _Lambda ^A(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector.rnrnThe hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60deg slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes.rnrnTwo fiber modules were tested with a carbon beam at GSI, showing a time resolution of 220 ps (FWHM) and a position residual of 270 microm m (FWHM) with a detection efficiency epsilon>99%.rnrnThe characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized.rnrnThe design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut für Kernphysik of the Johannes Gutenberg - Universität Mainz.