3 resultados para Personal construct theory
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Dissertation werden zwei verschiedene Aspekte des Sektors ungerader innerer Parität der mesonischen chiralen Störungstheorie (mesonische ChPT) untersucht. Als erstes wird die Ein-Schleifen-Renormierung des führenden Terms, der sog. Wess-Zumino-Witten-Wirkung, durchgeführt. Dazu muß zunächst der gesamte Ein-Schleifen-Anteil der Theorie mittels Sattelpunkt-Methode extrahiert werden. Im Anschluß isoliert man alle singulären Ein-Schleifen-Strukturen im Rahmen der Heat-Kernel-Technik. Zu guter Letzt müssen diese divergenten Anteile absorbiert werden. Dazu benötigt man eine allgemeinste anomale Lagrange-Dichte der Ordnung O(p^6), welche systematisch entwickelt wird. Erweitert man die chirale Gruppe SU(n)_L x SU(n)_R auf SU(n)_L x SU(n)_R x U(1)_V, so kommen zusätzliche Monome ins Spiel. Die renormierten Koeffizienten dieser Lagrange-Dichte, die Niederenergiekonstanten (LECs), sind zunächst freie Parameter der Theorie, die individuell fixiert werden müssen. Unter Betrachtung eines komplementären vektormesonischen Modells können die Amplituden geeigneter Prozesse bestimmt und durch Vergleich mit den Ergebnissen der mesonischen ChPT eine numerische Abschätzung einiger LECs vorgenommen werden. Im zweiten Teil wird eine konsistente Ein-Schleifen-Rechnung für den anomalen Prozeß (virtuelles) Photon + geladenes Kaon -> geladenes Kaon + neutrales Pion durchgeführt. Zur Kontrolle unserer Resultate wird eine bereits vorhandene Rechnung zur Reaktion (virtuelles) Photon + geladenes Pion -> geladenes Pion + neutrales Pion reproduziert. Unter Einbeziehung der abgeschätzten Werte der jeweiligen LECs können die zugehörigen hadronischen Strukturfunktionen numerisch bestimmt und diskutiert werden.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
BCJ-relations have a series of important consequences in Quantum FieldrnTheory and in Gravity. In QFT, one can use BCJ-relations to reduce thernnumber of independent colour-ordered partial amplitudes and to relate nonplanarrnand planar diagrams in loop calculations. In addition, one can usernBCJ-numerators to construct gravity scattering amplitudes through a squaringrn procedure. For these reasons, it is important to nd a prescription tornobtain BCJ-numerators without requiring a diagram by diagram approach.rnIn this thesis, after introducing some basic concepts needed for the discussion,rnI will examine the existing diagrammatic prescriptions to obtainrnBCJ-numerators. Subsequently, I will present an algorithm to construct anrneective Yang-Mills Lagrangian which automatically produces kinematic numeratorsrnsatisfying BCJ-relations. A discussion on the kinematic algebrarnfound through scattering equations will then be presented as a way to xrnnon-uniqueness problems in the algorithm.