5 resultados para POLYSTYRENE POLY(VINYLMETHYLETHER) BLENDS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vinylphosphonic acid (VPA) was polymerized at 80 ºC by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 104 g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, 13C-NMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the 1H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the use of the discotic liquid crystalline HBCs and conjugated polymers based on 2,7-carbazole were investigated in detail as donor materials in organic bulk-heterojunction solar cells. It has been shown that they perform efficiently in photovoltaic devices in combination with suitable acceptors. The efficiency was found to depend strongly dependent on the morphology of the film. By investigation of a series of donor materials with similar molecular structures based on both discotic molecules and conjugated polymers, a structure-performance relation was established, which is not only instructive for these materials but also serves as a guideline for improved molecular design. For the series of HBCs used in this study, it is found that the device efficiency decreases with increasing length of the alkyl substituents in the HBC. Thus, the derivative with the smallest alkyl mantle, being more crystalline compared to the HBCs with longer alkyl chains, gave the highest EQE of 12%. A large interfacial separation was found in the blend of HBC-C6,2 and PDI, since the crystallization of the acceptor occurred in a solid matrix of HBC. This led to small dispersed organized domains and benefited the charge transport. In contrast, blends of HBC-C10,6/PDI or HBC-C14,10/PDI revealed a rather homogeneous film limiting the percolation pathways due to a mixed phase. For the first time, poly(2,7-carbazole) was incorporated as a donor material in solar cells using PDI as an electron acceptor. The good fit in orbital energy levels and absorption spectra led to high efficiency. This result indicates that conjugated polymers with high band-gap can also be applied as materials to build efficient solar cells if appropriate electron acceptors are chosen. In order to enhance the light absorption ability, new ladder-type polymers based on pentaphenylene and hexaphenylene with one and three nitrogen bridges per repeat unit have been synthesized and characterized. The polymer 2 with three nitrogen bridges showed more red-shifted absorbance and emission and better packing in the solid-state than the analogous polymer 3 with only one nitrogen bridge per monomer unit. An overall efficiency as high as 1.3% under solar light was obtained for the device based on 1 and PDI, compared with 0.7% for the PCz based device. Therefore, the device performance correlates to a large extent with the solar light absorption ability and the lateral distance between conjugated polymer chains. Since the lateral distance is determined by the length and number of attached alkyl side chains, it is possible to assume that these substituents insulate the charge carrier pathways and decrease the device performance. As an additional consequence, the active semiconductor is diluted in the insulating matrix leading to a lower light absorption. This work suggests ways to improve device performance by molecular design, viz. maintaining the HOMO level while bathochromically shifting the absorption by adopting a more rigid ladder-type structure. Also, a high ratio of nitrogen bridges with small alkyl substituents was a desirable feature both in terms of adjusting the absorption and maintaining a low lateral inter-chain separation, which was necessary for obtaining high current and efficiency values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: In this work, proton conducting copolymers, polymer blends and composites containing phosphonic acid groups have been prepared. Proton conduction mechanisms in these materials are discussed respectively in both, the anhydrous and humidified state. Atom transfer radical copolymerization (ATRCP) of diisopropyl-p-vinylbenzyl phosphonate (DIPVBP) and 4-vinyl pyridine (4VP) is studied for the first time in this work. The kinetic parameters are obtained by using the 1H-NMR online technique. Proton conduction in poly(vinylbenzyl phosphonic acid) (PVBPA) homopolymer and its statistical copolymers with 4-vinyl pyridine (poly(VBPA-stat-4VP)s) are comprehensively studied in both, the “dry” and “wet” state. Effects of temperature, water content and polymer composition on proton conductivities are studied and proton transport mechanisms under various conditions are discussed. The proton conductivity of the polymers is in the range of 10-6-10-8 S/cm in nominally dry state at 150 oC. However, proton conductivity of the polymers increases rapidly with water content in the polymers which can reach 10-2 S/cm at the water uptake of 25% in the polymers. The highest proton conductivity obtained from the polymers can even reach 0.3 S/cm which was measured at 85oC with 80% relative humidity in the measuring atmosphere. Poly(4-vinyl pyridine) was grafted from the surface of SiO2 nanoparticles using ATRP in this work for the first time. Following this approach, silica nanoparticles with a shell of polymeric layer are used as basic particles in a polymeric acidic matrix. The proton conductivities of the composites are studied under both, humidified and dry conditions. In dry state, the conductivity of the composites is in the range of 10-10~10-4 S/cm at 150 oC. While in humid state, the composites show much higher proton conductivity. The highest proton conductivity obtained with the composites is 0.5 S/cm measured at 85oC with 80% relative humidity in the measuring atmosphere. The miscibility of poly (vinyl phosphonic acid) and PEO is studied for the first time in this work and a phase diagram is plotted based on a DSC study and optical microscopy. With this knowledge, homogeneous PVPA/PEO mixtures are prepared as proton-conducting polymer blends. The mobility of phosphonic acid groups and PEO in the blends is determined by 1H-MAS-NMR in temperature dependent measurements. The effect of composition and the role of PEO on proton conduction are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the investigation of charge generation and recombination processes in three different polymer:fullerene photovoltaic blends by means of ultrafast time-resolved optical spectroscopy. The first donor polymer, namely poly[N-11"-henicosanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), is a mid-bandgap polymer, the other two materials are the low-bandgap donor polymers poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT) and poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT). Despite their broader absorption, the low-bandgap polymers do not show enhanced photovoltaic efficiencies compared to the mid-bandgap system.rnrnTransient absorption spectroscopy revealed that energetic disorder plays an important role in the photophysics of PCDTBT, and that in a blend with PCBM geminate losses are small. The photophysics of the low-bandgap system PCPDTBT were strongly altered by adding a high boiling point cosolvent to the polymer:fullerene blend due to a partial demixing of the materials. We observed an increase in device performance together with a reduction of geminate recombination upon addition of the cosolvent. By applying model-free multi-variate curve resolution to the spectroscopic data, we found that fast non-geminate recombination due to polymer triplet state formation is a limiting loss channel in the low-bandgap material system PCPDTBT, whereas in PSBTBT triplet formation has a smaller impact on device performance, and thus higher efficiencies are obtained.rn