2 resultados para PM2. 5

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been demonstrated that iodine does have an important influence on atmospheric chemistry, especially the formation of new particles and the enrichment of iodine in marine aerosols. It was pointed out that the most probable chemical species involved in the production or growth of these particles are iodine oxides, produced photochemically from biogenic halocarbon emissions and/or iodine emission from the sea surface. However, the iodine chemistry from gaseous to particulate phase in the coastal atmosphere and the chemical nature of the condensing iodine species are still not understood. A Tenax / Carbotrap adsorption sampling technique and a thermo-desorption / cryo-trap / GC-MS system has been further developed and improved for the volatile organic iodine species in the gas phase. Several iodo-hydrocarbons such as CH3I, C2H5I, CH2ICl, CH2IBr and CH2I2 etc., have been measured in samples from a calibration test gas source (standards), real air samples and samples from seaweeds / macro-algae emission experiments. A denuder sampling technique has been developed to characterise potential precursor compounds of coastal particle formation processes, such as molecular iodine in the gas phase. Starch, TMAH (TetraMethylAmmonium Hydroxide) and TBAH (TetraButylAmmonium Hydroxide) coated denuders were tested for their efficiencies to collect I2 at the inner surface, followed by a TMAH extraction and ICP/MS determination, adding tellurium as an internal standard. The developed method has been proved to be an effective, accurate and suitable process for I2 measurement in the field, with the estimated detection limit of ~0.10 ng∙L-1 for a sampling volume of 15 L. An H2O/TMAH-Extraction-ICP/MS method has been developed for the accurate and sensitive determination of iodine species in tropospheric aerosol particles. The particle samples were collected on cellulose-nitrate filters using conventional filter holders or on cellulose nitrate/tedlar-foils using a 5-stage Berner impactor for size-segregated particle analysis. The water soluble species as IO3- and I- were separated by anion exchanging process after water extraction. Non-water soluble species including iodine oxide and organic iodine were digested and extracted by TMAH. Afterwards the triple samples were analysed by ICP/MS. The detection limit for particulate iodine was determined to be 0.10~0.20 ng•m-3 for sampling volumes of 40~100 m3. The developed methods have been used in two field measurements in May 2002 and September 2003, at and around the Mace Head Atmospheric Research Station (MHARS) located at the west coast of Ireland. Elemental iodine as a precursor of the iodine chemistry in the coastal atmosphere, was determined in the gas phase at a seaweed hot-spot around the MHARS, showing I2 concentrations were in the range of 0~1.6 ng∙L-1 and indicating a positive correlation with the ozone concentration. A seaweed-chamber experiment performed at the field measurement station showed that the I2 emission rate from macro-algae was in the range of 0.019~0.022 ng•min-1•kg-1. During these experiments, nanometer-particle concentrations were obtained from the Scanning Mobility Particle Sizer (SMPS) measurements. Particle number concentrations were found to have a linear correlation with elemental iodine in the gas phase of the seaweeds chamber, showing that gaseous I2 is one of the important precursors of the new particle formation in the coastal atmosphere. Iodine contents in the particle phase were measured in both field campaigns at and around the field measurement station. Total iodine concentrations were found to be in the range of 1.0 ~ 21.0 ng∙m-3 in the PM2.5 samples. A significant correlation between the total iodine concentrations and the nanometer-particle number concentrations was observed. The particulate iodine species analysis indicated that iodide contents are usually higher than those of iodate in all samples, with ratios in the range of 2~5:1. It is possible that those water soluble iodine species are transferred through the sea-air interface into the particle phase. The ratio of water soluble (iodate + iodide) and non-water soluble species (probably iodine oxide and organic iodine compounds) was observed to be in the range of 1:1 to 1:2. It appears that higher concentrated non-water soluble species, as the products of the photolysis from the gas phase into the particle phase, can be obtained in those samples while the nucleation events occur. That supports the idea that iodine chemistry in the coastal boundary layer is linked with new particle formation events. Furthermore, artificial aerosol particles were formed from gaseous iodine sources (e.g. CH2I2) using a laboratory reaction-chamber experiment, in which the reaction constant of the CH2I2 photolysis was calculated to be based upon the first order reaction kinetic. The end products of iodine chemistry in the particle phase were identified and quantified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iodine chemistry plays an important role in the tropospheric ozone depletion and the new particle formation in the Marine Boundary Layer (MBL). The sources, reaction pathways, and the sinks of iodine are investigated using lab experiments and field observations. The aims of this work are, firstly, to develop analytical methods for iodine measurements of marine aerosol samples especially for iodine speciation in the soluble iodine; secondly, to apply the analytical methods in field collected aerosol samples, and to estimate the characteristics of aerosol iodine in the MBL. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) was the technique used for iodine measurements. Offline methods using water extraction and Tetra-methyl-ammonium-hydroxide (TMAH) extraction were applied to measure total soluble iodine (TSI) and total insoluble iodine (TII) in the marine aerosol samples. External standard calibration and isotope dilution analysis (IDA) were both conducted for iodine quantification and the limits of detection (LODs) were both 0.1 μg L-1 for TSI and TII measurements. Online couplings of Ion Chromatography (IC)-ICP-MS and Gel electrophoresis (GE)-ICP-MS were both developed for soluble iodine speciation. Anion exchange columns were adopted for IC-ICP-MS systems. Iodide, iodate, and unknown signal(s) were observed in these methods. Iodide and iodate were separated successfully and the LODs were 0.1 and 0.5 μg L-1, respectively. Unknown signals were soluble organic iodine species (SOI) and quantified by the calibration curve of iodide, but not clearly identified and quantified yet. These analytical methods were all applied to the iodine measurements of marine aerosol samples from the worldwide filed campaigns. The TSI and TII concentrations (medians) in PM2.5 were found to be 240.87 pmol m-3 and 105.37 pmol m-3 at Mace Head, west coast of Ireland, as well as 119.10 pmol m-3 and 97.88 pmol m-3 in the cruise campaign over the North Atlantic Ocean, during June – July 2006. Inorganic iodine, namely iodide and iodate, was the minor iodine fraction in both campaigns, accounting for 7.3% (median) and 5.8% (median) in PM2.5 iodine at Mace Head and over the North Atlantic Ocean, respectively. Iodide concentrations were higher than iodate in most of the samples. In the contrast, more than 90% of TSI was SOI and the SOI concentration was correlated significantly with the iodide concentration. The correlation coefficients (R2) were both higher than 0.5 at Mace Head and in the first leg of the cruise. Size fractionated aerosol samples collected by 5 stage Berner impactor cascade sampler showed similar proportions of inorganic and organic iodine. Significant correlations were obtained in the particle size ranges of 0.25 – 0.71 μm and 0.71 – 2.0 μm between SOI and iodide, and better correlations were found in sunny days. TSI and iodide existed mainly in fine particle size range (< 2.0 μm) and iodate resided in coarse range (2.0 – 10 μm). Aerosol iodine was suggested to be related to the primary iodine release in the tidal zone. Natural meteorological conditions such as solar radiation, raining etc were observed to have influence on the aerosol iodine. During the ship campaign over the North Atlantic Ocean (January – February 2007), the TSI concentrations (medians) ranged 35.14 – 60.63 pmol m-3 among the 5 stages. Likewise, SOI was found to be the most abundant iodine fraction in TSI with a median of 98.6%. Significant correlation also presented between SOI and iodide in the size range of 2.0 – 5.9 μm. Higher iodate concentration was again found in the higher particle size range, similar to that at Mace Head. Airmass transport from the biogenic bloom region and the Antarctic ice front sector was observed to play an important role in aerosol iodine enhancement. The TSI concentrations observed along the 30,000 km long cruise round trip from East Asia to Antarctica during November 2005 – March 2006 were much lower than in the other campaigns, with a median of 6.51 pmol m-3. Approximately 70% of the TSI was SOI on average. The abundances of inorganic iodine including iodine and iodide were less than 30% of TSI. The median value of iodide was 1.49 pmol m-3, which was more than four fold higher than that of iodate (median, 0.28 pmol m-3). Spatial variation indicated highest aerosol iodine appearing in the tropical area. Iodine level was considerably lower in coastal Antarctica with the TSI median of 3.22 pmol m-3. However, airmass transport from the ice front sector was correlated with the enhance TSI level, suggesting the unrevealed source of iodine in the polar region. In addition, significant correlation between SOI and iodide was also shown in this campaign. A global distribution in aerosol was shown in the field campaigns in this work. SOI was verified globally ubiquitous due to the presence in the different sampling locations and its high proportion in TSI in the marine aerosols. The correlations between SOI and iodide were obtained not only in different locations but also in different seasons, implying the possible mechanism of iodide production through SOI decomposition. Nevertheless, future studies are needed for improving the current understanding of iodine chemistry in the MBL (e.g. SOI identification and quantification as well as the update modeling involving organic matters).