5 resultados para PHYLOGENETIC TREE SELECTION
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das Wachstum von Milchsäurebakterien-Arten der Gattungen Lactobacillus, Pediococcus und Leuconostoc während der Weinfermentation kann durch die Bildung verschiedener Stoffwechselprodukte zu Weinfehlern führen. Um rechtzeitig Gegenmaßnahmen ergreifen zu können und einem Weinverderb vorzubeugen, bedarf es geeigneter Identifizierungsmethoden. Klassische mikrobiologische Methoden reichen oft nicht aus, um Mikroorganismen auf Art- und Stammniveau gezielt zu identifizieren. Wegen ihrer schnellen Durchführbarkeit und Zuverlässigkeit sind molekularbiologische Identifizierungsmethoden zur Kontrolle der mikrobiellen Flora während der Lebensmittelfermentierung in der heutigen Zeit unabdingbar. In der vorliegenden Forschungsarbeit wurden die 23S rRNA-Gensequenzen von neun Pediococcus-Typstämmen sequenziert, analysiert und phylogenetische Analysen durchgeführt. Zur Art-Identifizierung der Pediokokken wurden PCR-Primer generiert und ein Multiplex PCR System entwickelt, mit dem alle typischen Arten simultan in einer Reaktion nachgewiesen werden konnten. Die Ergebnisse der Multiplex PCR-Identifizierung von 62 Pediococcus-Stämmen aus Kulturensammlungen und 47 neu isolierten Stämmen aus Wein zeigten, dass einige Stämme unter falschen Artnamen hinterlegt waren, und dass P. parvulus im Weinanbaugebiet Rheinhessen weit verbreitet war. Die Fähigkeit der Pediococcus-Stämme zur Exopolysaccharid-Synthese wurde durch den Nachweis zweier Gene überprüft. Auf Basis der 23S rDNA-Sequenzen wurden rRNA-Sekundärstrukturen mit der neu entwickelten Software Structure Star generiert, die zum Auffinden von Zielbereichen für fluoreszenzmarkierte DNA-Sonden geeignet waren. Die Sequenzunterschiede zwischen den Pediococcus-Arten reichten aus, um zwei Gruppen durch Fluoreszenz in situ Hybridisierung differenzieren zu können. Die Verwendung unmarkierter Helfer-sonden verbesserte die Zugänglichkeit der Sonden an die rRNA, wodurch das Fluoreszenz-Signal verstärkt wurde. Um Milchsäurebakterien durch Denaturierende Gradienten Gel Elektrophorese differenzieren zu können, wurden Primer entwickelt, mit denen ein hochvariabler 23S rDNA-Bereich amplifiziert werden konnte. Die Nested Specifically Amplified Polymorphic DNA (nSAPD)-PCR wurde in der vorliegenden Arbeit zur Art- und Stamm-Differenzierung pro- und eukaryotischer Organismen angewandt. Es wurden vor allem weinrelevante Milchsäurebakterien der Gattungen Oenococcus, Lactobacillus, Pediococcus und Leuconostoc und Hefen der Gattungen Dekkera / Brettanomyces und Saccharomyces untersucht. Die Cluster-Analyse der Pediococcus-Typstämme führte zu einer unterschiedlichen Baum-Topologie im Vergleich zum phylogenetischen 23S rDNA-Stammbaum. Die Verwandtschaftsverhältnisse der untersuchten O. oeni-Stämme aus Starterkulturen konnten in Bezug auf eine frühere Cluster-Analyse reproduziert werden. Die Untersuchung von 40 B. bruxellensis-Stämmen aus rheinhessischen Weinproben zeigte eine Gruppierung der Stämme gemäß dem Ort der Probennahme. Beim Vergleich der Verwandtschaftsverhältnisse von Stämmen der Arten P. parvulus und B. bruxellensis, die aus denselben Weinproben isoliert wurden, konnte eine hohe Übereinstimmung der beiden Baum-Topologien beobachtet werden. Anhand der SAPD-PCR Untersuchung von Sekthefen aus Starterkulturen konnten alle Stämme der Art S. cerevisiae zugeordnet werden. Die nSAPD-PCR war darüber hinaus geeignet, um höhere Eukaryoten wie Weinreben zu differenzieren und es konnten die Verwandtschaftsverhältnisse von Mäusen und menschlichen Individuen durch Cluster-Analysen nachvollzogen werden. Mit Hilfe der Sequence Characterized Amplified Region (SCAR)-Technik wurden (n)SAPD-Marker in SCAR-Marker konvertiert. Die neu generierten SCAR-Primer konnten zur simultanen Art-Identifizierung von sieben weinschädlichen Milchsäurebakterien in einer Multiplex PCR erfolgreich eingesetzt werden. Die in dieser Arbeit entwickelten molekularbiologischen Identifizierungsmethoden können zum Beispiel in der mikrobiologischen Qualitätskontrolle Anwendung finden.
Resumo:
Im Rahmen dieser Arbeit konnte in dem marinen Schwamm Suberites domuncula ein Gen identifiziert werden, dessen C-terminale konservierte Domäne eine hohe Sequenzähnlichkeit zu den Zinkfingerdomänen der Nanos-Proteine aufweist. Weiter konnte ein N-terminales Sequenzmotiv identifiziert werden, das eine hohe Sequenzidentität zu den konservierten NIM Motiven (CNOT1-interagierendes-Motiv) von Nanos zeigt. Nach der Klonierung der cDNA erfolgte die Expression des als Sd_nrp bezeichneten Proteins in E. coli Bakterien, für dessen 231 Aminosäuren umfassende Polypeptidkette eine theoretische Molekülmasse von 25.8 kDa berechnet wurde. Anschließend gelang ein Nachweis des Proteins mithilfe eines polyklonalen, gegen Sd_nrp gerichteten Antikörpers in drei Gewebetypen, dem Pinacoderm, den Primmorphen (3D-Zellaggregate) und den Gemmulae (Dauerstadien der Schwämme). Dabei konnte die höchste Expression von Sd_nrp in den als totipotent geltenden Stammzellen der Schwämme, den Archaeocyten innerhalb der Gemmulae beobachtet werden. Die Identifizierung der Zellstrukturen, erfolgte dabei aufgrund morphologischer Vergleiche. Speziell die Merkmale der Zellen in den Gemmulae, der große Nukleus, die amöboide Form sowie die granulären Reservesubstanzen, entsprechen den typischen morphologischen Eigenschaften der Archaeocyten, und bestätigen die Interpretation der Ergebnisse. Weiter konnte mit Hilfe des Anti-Sd_nrp Antikörpers das native Protein in Proteinextrakten aus Gewebe adulter Tiere nachgewiesen werden. Die vergleichende Sequenzanalyse von Sd_nrp mit dem Nanos-verwandten Protein der Schwammspezies Ephydatia fluviatilis und die phylogenetische Stammbaum-Analyse mit Nanos-Homologen unterschiedlicher Invertebraten und Vertebraten lässt die Schlussfolgerung zu, dass es sich bei dem hier identifizierten Protein Sd_nrp um ein Nanos-verwandtes Protein handelt. Darüber hinaus konnte anhand eines Homologiemodells bestätigt werden, dass es sich bei der konservierten C-terminalen Domäne des Proteins Sd_nrp um die für Nanos-Proteine spezifische Zinkfingerstruktur mit dem konservierten Sequenzmotiv CCHC handelt. Dieses Ergebnis konnte auch bei einem Vergleich der Zinkfingerdomäne von Sd_nrp mit den Zinkfingerdomänen der Nanos-Homologen unterschiedlicher Invertebraten- und Vertebratenspezies bestätigt werden.
Resumo:
One of the quickest plant movements ever known is made by the ´explosive´ style in Marantaceae in the service of secondary pollen presentation – herewith showing a striking apomorphy to the sister Cannaceae that might be of high evolutionary consequence. Though known already since the beginning of the 19th century the underlying mechanism of the movement has hitherto not been clarified. The present study reports about the biomechanics of the style-staminode complex and the hydraulic principles of the movement. For the first time it is shown by experiment that in Maranta noctiflora through longitudinal growth of the maturing style in the ´straitjacket´ of the hooded staminode both the hold of the style prior to its release and its tensioning for the movement are brought about. The longer the style grows in relation to the enclosing hooded staminode the more does its capacity for curling up for pollen transfer increase. Hereby I distinguish between the ´basic tension´ that a growing style builds up anyway, even when the hooded staminode is removed beforehand, and the ´induced tension´ which comes about only under the pressure of a ´too short´ hooded staminode and which enables the movement. The results of these investigations are discussed in view of previous interpretations ranging from possible biomechanical to electrophysiological mechanisms. To understand furthermore by which means the style gives way to the strong bending movement without suffering outwardly visible damage I examined its anatomical structure in several genera for its mechanical and hydraulic properties and for the determination of the entire curvature after release. The actual bending part contains tubulate cells whose walls are extraordinarily porous and large longitudinal intercellular spaces. SEM indicates the starting points of cell-wall loosening in primary walls and lysis of middle lamellae - probably through an intense pectinase activity in the maturing style. Fluorescence pictures of macerated and living style-tissue confirm cell-wall perforations that do apparently connect neighbouring cells, which leads to an extremely permeable parenchyma. The ´water-body´ can be shifted from central to dorsal cell layers to support the bending. The geometrical form of the curvature is determined by the vascular bundles. I conclude that the style in Marantaceae contains no ´antagonistic´ motile tissues as in Mimosa or Dionaea. Instead, through self-maceration it develops to a ´hydraulic tissue´ which carries out an irreversible movement through a sudden reshaping. To ascertain the evolutionary consequence of this apomorphic pollination mechanism the diversity and systematic value of hooded staminodes are examined. For this hooded staminodes of 24 genera are sorted according to a minimalistic selection of shape characters and eight morphological types are abstracted from the resulting groups. These types are mapped onto an already available maximally parsimonious tree comprising five major clades. An amazing correspondence is found between the morphological types and the clades; several sister-relationships are confirmed and in cases of uncertain position possible evolutionary pathways, such as convergence, dispersal or re-migration, are discussed, as well as the great evolutionary tendencies for the entire family in which – at least as regards the shape of hooded staminodes – there is obviously a tendency from complicated to strongly simplified forms. It suggests itself that such simplifying derivations may very likely have taken place as adaptations to pollinating animals about which at present too little is known. The value of morphological characters in relation to modern phylogenetic analysis is discussed and conditions for the selection of morphological characters valuable for a systematic grouping are proposed. Altogether, in view of the evolutionary success of Marantaceae compared with Cannaceae the movement mechanism of the style-staminode complex can safely be considered a key innovation within the order Zingiberales.
Resumo:
Die phylogenetische Position der Mollusken innerhalb der Trochozoa sowie die interne Evolution der Klassen der Mollusca sind weitgehend unbekannt und wurden in meiner Arbeit anhand molekularer Merkmale untersucht. Phylogenomische Analysen zeigten in der Vergangenheit eine gute Auflösung für ursprüngliche Speziationsereignisse. Daher wurden hier drei neue EST Datensätze generiert: für Sipunculus nudus (Sipuncula), Barentsia elongata (Kamptozoa) und Lepidochitona cinerea, (Polyplacophora, Mollusca). Zusätzlich wurden gezielt Gene verschiedener Mollusken mittels RT-PCR amplifiziert. rnSowohl Kamptozoen als auch Sipunculiden wurden aufgrund morphologischer Kriterien bisher als mögliche Schwestergruppe der Mollusken gehandelt, aber die hier erzielten Ergebnisse zur Evolution der Hämerythrine, Gen-Anordnungen der mitochondrialen Genome und phylogenetische Analysen der ribosomalen und der mitochondriellen Proteine stützen diese Hypothese nicht. Die Position der Kamptozoa erwies sich hier generell als unbeständig; phylogenomische Analysen deuten eine Nähe zu den Bryozoen an, aber diese Position wird stark durch die Auswahl der Taxa beeinflusst. Dagegen weisen meine Analysen klar auf eine nähere Beziehung zwischen Annelida und Sipuncula hin. Die ribosomalen Proteine zeigen Sipuncula (und Echiura) sogar als Subtaxa der Anneliden. Wie den Mollusken fehlt den Sipunculiden jegliche Segmentierung und meine Ergebnisse legen hier die Möglichkeit des Verlusts dieses Merkmals innerhalb der Anneliden bei den Sipunculiden nahe. Innerhalb der Mollusken wurden die Solenogastren bereits als Schwestergruppe aller rezenten Mollusken vorgeschlagen. Im Rahmen meiner Arbeit wurden von drei verschiedenen Solenogastren-Arten die ersten zuverlässigen 18S rRNA-Sequenzen ermittelt, und es zeigte sich, dass alle bisher veröffentlichten 18S-Sequenzen dieser Molluskenklasse höchst unvollständig oder fehlerhaft sind. rnRibosomale Proteine sind gute phylogenetische Marker und hier wurden die Auswahl und Anzahl dieser Gene für phylogenetische Analysen optimiert. Über Sonden-basierte Detektion wurde eine sampling-Strategie getestet, die im Vergleich mit standard-phylogenomischen Ansätzen zukünftige molekulare Stammbaumrekonstruktionen mit größerem Taxonsampling ermöglicht.rn
Resumo:
In many plant species, the genetic template of early life-stages is formed by animal-mediated pollination and seed dispersal and has profound impact on further recruitment and population dynamics. Understanding the impact of pollination and seed dispersal on genetic patterns is a central issue in plant population biology. In my thesis, I investigated (i) contemporary dispersal and gene flow distances as well as (ii) genetic diversity and spatial genetic structure (SGS) across subsequent recruitment stages in a population of the animal-pollinated and dispersed tree Prunus africana in Kakamega Forest, West Kenya. Using microsatellite markers and parentage analyses, I inferred distances of pollen dispersal (father-to-mother), seed dispersal/maternal gene flow (mother-to-offspring) as well as paternal gene flow (father-to-offspring) for four early life stages of the species (seeds and fruits, current year seedlings, seedlings ≤ 3yr, seedlings > 3yr). Distances of pollen and seed dispersal as well as paternal gene flow were significantly shorter than expected from the spatial arrangement of trees and sampling plots. They were not affected by the density of conspecific trees in the surrounding. At the propagule stage, mean pollen dispersal distances were considerably (23-fold) longer than seed dispersal distances, and paternal gene flow distances exceeded maternal gene flow by a factor of 25. Seed dispersal distances were remarkably restricted, potentially leading to a strong initial SGS. The initial genetic template created by pollination and seed dispersal was extensively altered during later recruitment stages. Potential Janzen-Connell effects led to markedly increasing distances between offspring and both parental trees in older life stages. This showed that distance and density-dependent mortality factors are not exclusively related to the mother tree, but also to the father. Across subsequent recruitment stages, the pollen to seed dispersal ratio and the paternal to maternal gene flow ratio dropped to 2.1 and 3.4, respectively, in seedlings > 3yr. The relative changes in effective pollen dispersal, seed dispersal, and paternal gene flow distances across recruitment stages elucidate the mechanisms affecting the contribution of the two processes pollen and seed dispersal to overall gene flow. Using the same six microsatellite loci, I analyzed genetic diversity and SGS across five life stages, from seed rain to adults. Levels of genetic diversity within the studied P. africana population were comparable to other Prunus species and did not vary across life stages. In congruence with the short seed dispersal distances, I found significant SGS in all life stages. SGS decreased from seed and early seedling stages to older juvenile stages, and it was higher in adults than in late juveniles of the next generation. A comparison of the data with direct assessments of contemporary gene flow patterns indicate that distance- or density-dependent mortality, potentially due to Janzen-Connell effects, led to the initial decrease in SGS. Intergeneration variation in SGS could have been driven by variation in demographic processes, the effect of overlapping generations, and local selection processes. Overall, my study showed that complex sequential processes during recruitment contribute to the spatial genetic structure of tree populations. It highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal-mediated pollen and seed dispersal on spatial population dynamics and genetic patterns of trees.