2 resultados para PHASE-INVERSION
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wurde die Morphologie von zweiphasigen Polymermischungen unter Scherung in situ mit Hilfe einer Kombination aus optischer Scherzelle, Durchlichtmikroskop und computergestützten CCD-Kamera untersucht. Als Modellblends dienten die unverträglichen, bei Raumtemperatur flüssigen Polymersysteme Polyisobutylen (PIB)/Polydimethylsiloxan (PDMS) (I) und Poly(dimethyl-co-methylphenyl)siloxan/PDMS (II). Alle Komponenten verhalten sich bei den verwendeten Scherraten newtonisch.Eine der wichtigsten Einflussgrößen für die Blendmorphologie ist die Grenzflächenspannung gamma 12. Sie wurde für I und II mit Hilfe der Methode der Tropfenrelaxation (dynamisch) als Funktion der Zeit bestimmt. Diese Methode erlaubt die Messung von gamma 12 für Tropfen der Phase A in B sowie von Tropfen B in A. Bei der Methode des hängenden Tropfens (statisch) muss der Tropfen aus der Phase mit der höheren Dichte bestehen. Wo der Vergleich der beiden Methoden möglich ist, stimmen die Ergebnisse für beide Systeme sehr gut überein. Bei II sind die aus der Tropfenrelaxation erhaltenen gamma 12-Werte der beiden komplementären Zusammensetzungen im Rahmen des Fehlers gleich, bei I zeigt ein PIB-Tropfen in PDMS einen um 40 % niedrigeren Wert als ein PDMS-Tropfen in PIB, dies wird auf die Diffusion von kurzkettigen Anteilen des PDMS in die Grenzschicht zurückgeführt. Die Grenzflächenspannung hängt also unter Umständen auch bei binären Systemen deutlich von der Zusammensetzung ab.Für II wurde die Blendmorphologie über den gesamten Zusammensetzungsbereich untersucht. Die häufig beobachteten cokontinuierlichen Strukturen treten bei keiner Zusammensetzung auf. Die Phaseninversion erkennt man in einer sprunghaften Änderung der Tropfengröße zwischen phiPDMS <= 0,400 und 0,500; zudem lässt sich die Zeitabhängigkeit der Radien durch Auftragung gegen das Produkt aus der Deformation und dem Quadrat des Volumenbruchs der Tropfenphase für 0 <= phiPDMS <= 0,400 sowie 0,500 <= phiPDMS <= 1 normieren. Für I und II wurde die Morphologieentwicklung bei 25 °C nach Vorscherung bei 100 bzw. 50 s-1 und anschließendem Sprung der Scherrate auf deutlich niedrigere Werte als Funktion der Zeit verfolgt. Hierbei erhält man bei genügend langer Messdauer (mindestens 200 000-300 000 Schereinheiten) konstante Tropfengrößen. Zum einen handelt es sich dabei um pseudo-stationäre Werte, die nur durch Koaleszenz bestimmt sind, zum anderen um echte stationäre Radien, die durch gleichzeitig ablaufende Koaleszenz und Zerteilung entstehen. Für I liegen die stationären Mittelwerte auf der Zerteilungskurve, für II hingegen auf der Koaleszenzkurve.Der Einfluss eines grenzflächenwirksamen Additivs wurde anhand von I durch Zugabe des Blockcopolymer PIB-b-PDMS zu PIB untersucht. Der Vergleich des zeitlichen Verlaufs von gamma 12 mit der Morphologieentwicklung zeigt, dass das Additiv eine Stabilisierung der feinen Tropfen/Matrix-Struktur des Blends durch Hinderung der Koaleszenz und nicht durch Reduktion der Grenzflächenspannung bewirkt.
Resumo:
A study of maar-diatreme volcanoes has been perfomed by inversion of gravity and magnetic data. The geophysical inverse problem has been solved by means of the damped nonlinear least-squares method. To ensure stability and convergence of the solution of the inverse problem, a mathematical tool, consisting in data weighting and model scaling, has been worked out. Theoretical gravity and magnetic modeling of maar-diatreme volcanoes has been conducted in order to get information, which is used for a simple rough qualitative and/or quantitative interpretation. The information also serves as a priori information to design models for the inversion and/or to assist the interpretation of inversion results. The results of theoretical modeling have been used to roughly estimate the heights and the dip angles of the walls of eight Eifel maar-diatremes — each taken as a whole. Inversemodeling has been conducted for the Schönfeld Maar (magnetics) and the Hausten-Morswiesen Maar (gravity and magnetics). The geometrical parameters of these maars, as well as the density and magnetic properties of the rocks filling them, have been estimated. For a reliable interpretation of the inversion results, beside the knowledge from theoretical modeling, it was resorted to other tools such like field transformations and spectral analysis for complementary information. Geologic models, based on thesynthesis of the respective interpretation results, are presented for the two maars mentioned above. The results gave more insight into the genesis, physics and posteruptive development of the maar-diatreme volcanoes. A classification of the maar-diatreme volcanoes into three main types has been elaborated. Relatively high magnetic anomalies are indicative of scoria cones embeded within maar-diatremes if they are not caused by a strong remanent component of the magnetization. Smaller (weaker) secondary gravity and magnetic anomalies on the background of the main anomaly of a maar-diatreme — especially in the boundary areas — are indicative for subsidence processes, which probably occurred in the late sedimentation phase of the posteruptive development. Contrary to postulates referring to kimberlite pipes, there exists no generalized systematics between diameter and height nor between geophysical anomaly and the dimensions of the maar-diatreme volcanoes. Although both maar-diatreme volcanoes and kimberlite pipes are products of phreatomagmatism, they probably formed in different thermodynamic and hydrogeological environments. In the case of kimberlite pipes, large amounts of magma and groundwater, certainly supplied by deep and large reservoirs, interacted under high pressure and temperature conditions. This led to a long period phreatomagmatic process and hence to the formation of large structures. Concerning the maar-diatreme and tuff-ring-diatreme volcanoes, the phreatomagmatic process takes place due to an interaction between magma from small and shallow magma chambers (probably segregated magmas) and small amounts of near-surface groundwater under low pressure and temperature conditions. This leads to shorter time eruptions and consequently to structures of smaller size in comparison with kimberlite pipes. Nevertheless, the results show that the diameter to height ratio for 50% of the studied maar-diatremes is around 1, whereby the dip angle of the diatreme walls is similar to that of the kimberlite pipes and lies between 70 and 85°. Note that these numerical characteristics, especially the dip angle, hold for the maars the diatremes of which — estimated by modeling — have the shape of a truncated cone. This indicates that the diatreme can not be completely resolved by inversion.