1 resultado para Ortmann, Chuck
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
This study deals with the function and regulation of programmed cell death, or apoptosis, in the development of the embryonic central nervous system of Drosophila melanogaster. The first part provides a description of apoptosis-deficient embryos, which showed that preventing apoptosis does not cause gross morphological defects in the CNS, as it appears well organized despite the presence of too many cells. An analysis of the incidence and pattern of apoptosis over the course of development discloses a partly very orderly pattern suggesting tight spatio-temporal control, but also reveals random apoptotic cells, which suggests a certain amount of plasticity in the embryo. This analysis also allowed precise identification of some of the dying neural cells in the embryo, and establishment of single cell models for studying regulation of segment-specific apoptosis in the embryonic CNS. In the second part of the work, further investigations into mechanisms controlling segment-specific apoptosis revealed the involvement of two Hox genes, Antennapedia (Antp) and Ultrabithorax (Ubx), in this process. Hox genes control the formation of segment-specific structures in their domains of expression, but also regulate organ and tissue morphogenesis. The study presented here shows that Antp and Ubx play antagonistic roles in motoneuron survival in the embryo. Ubx expression in the CNS is strongly upregulated at a late point in development, when most cells have begun to differentiate. This upregulation shortly precedes Ubx-dependent, segment-specific apoptosis of two differentiated motoneurons. It could further be demonstrated that Antp is required for proper development of the NB7-3 lineage and for survival of the NB7-3 motoneuron in the anterior thoracic segments. In segments where Antp and Ubx expression overlaps, Ubx counteracts the anti-apoptotic function of Antp, resulting in cell death. Thus, these two Hox genes play opposing roles in the survival of differentiated neurons in the late developing nervous system. They thereby contribute to establishment of correct connections between outward-projecting neurons and their targets, which is crucial for the assembly of functional neural circuits, as these have to fulfill region-specific locomotion and sensory requirements along the antero-posterior body axis.