7 resultados para Optical pattern recognition Data processing
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Für die Zukunft wird eine Zunahme an Verkehr prognostiziert, gleichzeitig herrscht ein Mangel an Raum und finanziellen Mitteln, um weitere Straßen zu bauen. Daher müssen die vorhandenen Kapazitäten durch eine bessere Verkehrssteuerung sinnvoller genutzt werden, z.B. durch Verkehrsleitsysteme. Dafür werden räumlich aufgelöste, d.h. den Verkehr in seiner flächenhaften Verteilung wiedergebende Daten benötigt, die jedoch fehlen. Bisher konnten Verkehrsdaten nur dort erhoben werden, wo sich örtlich feste Meßeinrichtungen befinden, jedoch können damit die fehlenden Daten nicht erhoben werden. Mit Fernerkundungssystemen ergibt sich die Möglichkeit, diese Daten flächendeckend mit einem Blick von oben zu erfassen. Nach jahrzehntelangen Erfahrungen mit Fernerkundungsmethoden zur Erfassung und Untersuchung der verschiedensten Phänomene auf der Erdoberfläche wird nun diese Methodik im Rahmen eines Pilotprojektes auf den Themenbereich Verkehr angewendet. Seit Ende der 1990er Jahre wurde mit flugzeuggetragenen optischen und Infrarot-Aufnahmesystemen Verkehr beobachtet. Doch bei schlechten Wetterbedingungen und insbesondere bei Bewölkung, sind keine brauchbaren Aufnahmen möglich. Mit einem abbildenden Radarverfahren werden Daten unabhängig von Wetter- und Tageslichtbedingungen oder Bewölkung erhoben. Im Rahmen dieser Arbeit wird untersucht, inwieweit mit Hilfe von flugzeuggetragenem synthetischem Apertur Radar (SAR) Verkehrsdaten aufgenommen, verarbeitet und sinnvoll angewendet werden können. Nicht nur wird die neue Technik der Along-Track Interferometrie (ATI) und die Prozessierung und Verarbeitung der aufgenommenen Verkehrsdaten ausführlich dargelegt, es wird darüberhinaus ein mit dieser Methodik erstellter Datensatz mit einer Verkehrssimulation verglichen und bewertet. Abschließend wird ein Ausblick auf zukünftige Entwicklungen der Radarfernerkundung zur Verkehrsdatenerfassung gegeben.
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
Die Aufgabenstellung, welche dieser Dissertation zugrunde liegt, lässt sich kurz als die Untersuchung von komponentenbasierten Konzepten zum Einsatz in der Softwareentwicklung durch Endanwender beschreiben. In den letzten 20 bis 30 Jahren hat sich das technische Umfeld, in dem ein Großteil der Arbeitnehmer seine täglichen Aufgaben verrichtet, grundlegend verändert. Der Computer, früher in Form eines Großrechners ausschließlich die Domäne von Spezialisten, ist nun ein selbstverständlicher Bestandteil der täglichen Arbeit. Der Umgang mit Anwendungsprogrammen, die dem Nutzer erlauben in einem gewissen Rahmen neue, eigene Funktionalität zu definieren, ist in vielen Bereichen so selbstverständlich, dass viele dieser Tätigkeiten nicht bewusst als Programmieren wahrgenommen werden. Da diese Nutzer nicht notwendigerweise in der Entwicklung von Software ausgebildet sind, benötigen sie entsprechende Unterstützung bei diesen Tätigkeiten. Dies macht deutlich, welche praktische Relevanz die Untersuchungen in diesem Bereich haben. Zur Erstellung eines Programmiersystems für Endanwender wird zunächst ein flexibler Anwendungsrahmen entwickelt, welcher sich als Basis zur Erstellung solcher Systeme eignet. In Softwareprojekten sind sich ändernde Anforderungen und daraus resultierende Notwendigkeiten ein wichtiger Aspekt. Dies wird im Entwurf des Frameworks durch Konzepte zur Bereitstellung von wieder verwendbarer Funktionalität durch das Framework und Möglichkeiten zur Anpassung und Erweiterung der vorhandenen Funktionalität berücksichtigt. Hier ist zum einen der Einsatz einer serviceorientierten Architektur innerhalb der Anwendung und zum anderen eine komponentenorientierte Variante des Kommando-Musters zu nennen. Zum anderen wird ein Konzept zur Kapselung von Endnutzerprogrammiermodellen in Komponenten erarbeitet. Dieser Ansatz ermöglicht es, unterschiedliche Modelle als Grundlage der entworfenen Entwicklungsumgebung zu verwenden. Im weiteren Verlauf der Arbeit wird ein Programmiermodell entworfen und unter Verwendung des zuvor genannten Frameworks implementiert. Damit dieses zur Nutzung durch Endanwender geeignet ist, ist eine Anhebung der zur Beschreibung eines Softwaresystems verwendeten Abstraktionsebene notwendig. Dies wird durch die Verwendung von Komponenten und einem nachrichtenbasierten Kompositionsmechanismus erreicht. Die vorgenommene Realisierung ist dabei noch nicht auf konkrete Anwendungsfamilien bezogen, diese Anpassungen erfolgen in einem weiteren Schritt für zwei unterschiedliche Anwendungsbereiche.
Resumo:
Data deduplication describes a class of approaches that reduce the storage capacity needed to store data or the amount of data that has to be transferred over a network. These approaches detect coarse-grained redundancies within a data set, e.g. a file system, and remove them.rnrnOne of the most important applications of data deduplication are backup storage systems where these approaches are able to reduce the storage requirements to a small fraction of the logical backup data size.rnThis thesis introduces multiple new extensions of so-called fingerprinting-based data deduplication. It starts with the presentation of a novel system design, which allows using a cluster of servers to perform exact data deduplication with small chunks in a scalable way.rnrnAfterwards, a combination of compression approaches for an important, but often over- looked, data structure in data deduplication systems, so called block and file recipes, is introduced. Using these compression approaches that exploit unique properties of data deduplication systems, the size of these recipes can be reduced by more than 92% in all investigated data sets. As file recipes can occupy a significant fraction of the overall storage capacity of data deduplication systems, the compression enables significant savings.rnrnA technique to increase the write throughput of data deduplication systems, based on the aforementioned block and file recipes, is introduced next. The novel Block Locality Caching (BLC) uses properties of block and file recipes to overcome the chunk lookup disk bottleneck of data deduplication systems. This chunk lookup disk bottleneck either limits the scalability or the throughput of data deduplication systems. The presented BLC overcomes the disk bottleneck more efficiently than existing approaches. Furthermore, it is shown that it is less prone to aging effects.rnrnFinally, it is investigated if large HPC storage systems inhibit redundancies that can be found by fingerprinting-based data deduplication. Over 3 PB of HPC storage data from different data sets have been analyzed. In most data sets, between 20 and 30% of the data can be classified as redundant. According to these results, future work in HPC storage systems should further investigate how data deduplication can be integrated into future HPC storage systems.rnrnThis thesis presents important novel work in different area of data deduplication re- search.
Resumo:
Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.
Resumo:
Die Materialverfolgung gewinnt in der Metallindustrie immer mehr an Bedeutung:rnEs ist notwendig, dass ein Metallband im Fertigungsprozess ein festgelegtes Programm durchläuft - erst dann ist die Qualität des Endprodukts garantiert. Die bisherige Praxis besteht darin, jedem Metallband eine Nummer zuzuordnen, mit der dieses Band beschriftet wird. Bei einer tagelangen Lagerung der Bänder zwischen zwei Produktionsschritten erweist sich diese Methode als fehleranfällig: Die Beschriftungen können z.B. verloren gehen, verwechselt, falsch ausgelesen oder unleserlich werden. 2007 meldete die iba AG das Patent zur Identifikation der Metallbänder anhand ihres Dickenprofils an (Anhaus [3]) - damit kann die Identität des Metallbandes zweifelsfrei nachgewiesen werden, eine zuverlässige Materialverfolgung wurde möglich.Es stellte sich jedoch heraus, dass die messfehlerbehafteten Dickenprofile, die als lange Zeitreihen aufgefasst werden können, mit Hilfe von bisherigen Verfahren (z.B. L2-Abstandsminimierung oder Dynamic Time Warping) nicht erfolgreich verglichen werden können.Diese Arbeit stellt einen effizienten feature-basierten Algorithmus zum Vergleichrnzweier Zeitreihen vor. Er ist sowohl robust gegenüber Rauschen und Messausfällen als auch invariant gegenüber solchen Koordinatentransformationen der Zeitreihen wie Skalierung und Translation. Des Weiteren sind auch Vergleiche mit Teilzeitreihen möglich. Unser Framework zeichnet sich sowohl durch seine hohe Genauigkeit als auch durch seine hohe Geschwindigkeit aus: Mehr als 99.5% der Anfragen an unsere aus realen Profilen bestehende Testdatenbank werden richtig beantwortet. Mit mehreren hundert Zeitreihen-Vergleichen pro Sekunde ist es etwa um den Faktor 10 schneller als die auf dem Gebiet der Zeitreihenanalyse etablierten Verfahren, die jedoch nicht im Stande sind, mehr als 90% der Anfragen korrekt zu verarbeiten. Der Algorithmus hat sich als industrietauglich erwiesen. Die iba AG setzt ihn in einem weltweit einzigartigen dickenprofilbasierten Überwachungssystemrnzur Materialverfolgung ein, das in ersten Stahl- und Aluminiumwalzwerkenrnbereits erfolgreich zum Einsatz kommt.
Resumo:
In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.