2 resultados para Non-isovalent oxide doping
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
This thesis aims at connecting structural and functional changes of complex soft matter systems due to external stimuli with non-covalent molecular interaction profiles. It addresses the problem of elucidating non-covalent forces as structuring principle of mainly polymer-based systems in solution. The structuring principles of a wide variety of complex soft matter types are analyzed. In many cases this is done by exploring conformational changes upon the exertion of external stimuli. The central question throughout this thesis is how a certain non-covalent interaction profile leads to solution condition-dependent structuring of a polymeric system.rnTo answer this question, electron paramagnetic resonance (EPR) spectroscopy is chosen as the main experimental method for the investigation of the structure principles of polymers. With EPR one detects only the local surroundings or environments of molecules that carry an unpaired electron. Non-covalent forces are normally effective on length scales of a few nanometers and below. Thus, EPR is excellently suited for their investigations. It allows for detection of interactions on length scales ranging from approx. 0.1 nm up to 10 nm. However, restriction to only one experimental technique likely leads to only incomplete pictures of complex systems. Therefore, the presented studies are frequently augmented with further experimental and computational methods in order to yield more comprehensive descriptions of the systems chosen for investigation.rnElectrostatic correlation effects in non-covalent interaction profiles as structuring principles in colloid-like ionic clusters and DNA condensation are investigated first. Building on this it is shown how electrostatic structuring principles can be combined with hydrophobic ones, at the example of host-guest interactions in so-called dendronized polymers (denpols).rnSubsequently, the focus is shifted from electrostatics in dendronized polymers to thermoresponsive alkylene oxide-based materials, whose structuring principles are based on hydrogen bonds and counteracting hydrophobic interactions. The collapse mechanism in dependence of hydrophilic-hydrophobic balance and topology of these polymers is elucidated. Complementarily the temperature-dependent phase behavior of elastin-like polypeptides (ELPs) is investigated. ELPs are the first (and so far only) class of compounds that is shown to feature a first-order inverse phase transition on nanoscopic length scales.rnFinally, this thesis addresses complex biological systems, namely intrinsically disordered proteins (IDPs). It is shown that the conformational space of the IDPs Osteopontin (OPN), a cytokine involved in metastasis of several kinds of cancer, and BASP1 (brain acid soluble protein one), a protein associated with neurite outgrowth, is governed by a subtle interplay between electrostatic forces, hydrophobic interaction, system entropy and hydrogen bonds. Such, IDPs can even sample cooperatively folded structures, which have so far only been associated with globular proteins.
Resumo:
Thermoelektrizität beschreibt die reversible Beeinflussung und Wechselwirkung von Elektrizität und Temperatur T in Systemen abseits des thermischen Gleichgewichtes. In diesen führt ein Temperaturgradient entlang eines thermoelektrischen Materials zu einem kontinuierlichen Ungleichgewicht in der Energieverteilung der Ladungsträger. Dies hat einen Diffusionsstrom der energiereichen Ladungsträger zum kalten Ende und der energiearmen Ladungsträger zum heißen Ende zur Folge. Da in offenen Stromkreisen kein Strom fließt, wird ein Ungleichgewicht der Ströme über das Ausbilden eines elektrischen Feldes kompensiert. Die dadurch entstehende Spannung wird als Seebeck Spannung bezeichnet. Über einen geeigneten Verbraucher, folgend aus dem Ohm'schen Gesetz, kann nun ein Strom fließen und elektrische Energie gewonnen werden. Den umgekehrten Fall beschreibt der sogenannte Peltier Effekt, bei dem ein Stromfluss durch zwei unterschiedliche miteinander verbundene Materialien ein Erwärmen oder Abkühlen der Kontaktstelle zur Folge hat. Die Effizienz eines thermoelektrischen Materials kann über die dimensionslose Größe ZT=S^2*sigma/kappa*T charakterisiert werden. Diese setzt sich zusammen aus den materialspezifischen Größen der elektrischen Leitfähigkeit sigma, der thermischen Leitfähigkeit kappa und dem Seebeck Koeffizienten S als Maß der erzeugten Spannung bei gegebener Temperaturdifferenz. Diese Arbeit verfolgt den Ansatz glaskeramische Materialien mit thermoelektrischen Kristallphasen zu synthetisieren, sie strukturell zu charakterisieren und ihre thermoelektrischen Eigenschaften zu messen, um eine Struktur-Eigenschaft Korrelation zu erarbeiten. Hierbei werden im Detail eine elektronenleitende (Hauptphase SrTi_xNb_{1-x}O_3) sowie eine löcherleitende Glaskeramik (Hauptphase Bi_2Sr_2Co_2O_y) untersucht. Unter dem Begriff Glaskeramiken sind teilkristalline Materialien zu verstehen, die aus Glasschmelzen durch gesteuerte Kristallisation hergestellt werden können. Über den Grad der Kristallisation und die Art der ausgeschiedenen Spezies an Kristallen lassen sich die physikalischen Eigenschaften dieser Systeme gezielt beeinflussen. Glaskeramiken bieten, verursacht durch ihre Restglasphase, eine niedrige thermische Leitfähigkeit und die Fermi Energie lässt sich durch Dotierungen in Richtung des Leitungs- oder Valenzbands verschieben. Ebenso besitzen glaskeramische Materialien durch ihre Porenfreiheit verbesserte mechanische Eigenschaften gegenüber Keramiken und sind weniger anfällig für den Einfluss des Sauerstoffpartialdruckes p_{O_2} auf die Parameter. Ein glaskeramisches und ein gemischt keramisch/glaskeramisches thermoelektrisches Modul aus den entwickelten Materialien werden konzipiert, präpariert, kontaktiert und bezüglich ihrer Leistung vermessen.