5 resultados para Non ideal sources
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
A one-dimensional multi-component reactive fluid transport algorithm, 1DREACT (Steefel, 1993) was used to investigate different fluid-rock interaction systems. A major short coming of mass transport calculations which include mineral reactions is that solid solutions occurring in many minerals are not treated adequately. Since many thermodynamic models of solid solutions are highly non-linear, this can seriously impact on the stability and efficiency of the solution algorithms used. Phase petrology community saw itself faced with a similar predicament 10 years ago. To improve performance and reliability, phase equilibrium calculations have been using pseudo compounds. The same approach is used here in the first, using the complex plagioclase solid solution as an example. Thermodynamic properties of a varying number of intermediate plagioclase phases were calculated using ideal molecular, Al-avoidance, and non-ideal mixing models. These different mixing models can easily be incorporated into the simulations without modification of the transport code. Simulation results show that as few as nine intermediate compositions are sufficient to characterize the diffusional profile between albite and anorthite. Hence this approach is very efficient, and can be used with little effort. A subsequent chapter reports the results of reactive fluid transport modeling designed to constrain the hydrothermal alteration of Paleoproterozoic sediments of the Southern Lake Superior region. Field observations reveal that quartz-pyrophyllite (or kaolinite) bearing assemblages have been transformed into muscovite-pyrophyllite-diaspore bearing assemblages due to action of fluids migrating along permeable flow channels. Fluid-rock interaction modeling with an initial qtz-prl assemblage and a K-rich fluid simulates the formation of observed mineralogical transformation. The bulk composition of the system evolves from an SiO2-rich one to an Al2O3+K2O-rich one. Simulations show that the fluid flow was up-temperature (e.g. recharge) and that fluid was K-rich. Pseudo compound approach to include solid solutions in reactive transport models was tested in modeling hydrothermal alteration of Icelandic basalts. Solid solutions of chlorites, amphiboles and plagioclase were included as the secondary mineral phases. Saline and fresh water compositions of geothermal fluids were used to investigate the effect of salinity on alteration. Fluid-rock interaction simulations produce the observed mineral transformations. They show that roughly the same alteration minerals are formed due to reactions with both types of fluid which is in agreement with the field observations. A final application is directed towards the remediation of nitrate rich groundwaters. Removal of excess nitrate from groundwater by pyrite oxidation was modeled using the reactive fluid transport algorithm. Model results show that, when a pyrite-bearing, permeable zone is placed in the flow path, nitrate concentration in infiltrating water can be significantly lowered, in agreement with proposals from the literature. This is due to nitrogen reduction. Several simulations investigate the efficiency of systems with different mineral reactive surface areas, reactive barrier zone widths, and flow rates to identify the optimum setup.
Resumo:
In this thesis, atomistic simulations are performed to investigate hydrophobic solvation and hydrophobic interactions in cosolvent/water binary mixtures. Many cosolvent/water binary mixtures exhibit non-ideal behavior caused by aggregation at the molecular scale level although they are stable and homogenous at the macroscopic scale. Force-field based atomistic simulations provide routes to relate atomistic-scale structure and interactions to thermodynamic solution properties. The predicted solution properties are however sensitive to the parameters used to describe the molecular interactions. In this thesis, a force field for tertiary butanol (TBA) and water mixtures is parameterized by making use of the Kirkwood-Buff theory of solution. The new force field is capable of describing the alcohol-alcohol, water-water and alcohol-water clustering in the solution as well as the solution components’ chemical potential derivatives in agreement with experimental data. With the new force field, the preferential solvation and the solvation thermodynamics of a hydrophobic solute in TBA/water mixtures have been studied. First, methane solvation at various TBA/water concentrations is discussed in terms of solvation free energy-, enthalpy- and entropy- changes, which have been compared to experimental data. We observed that the methane solvation free energy varies smoothly with the alcohol/water composition while the solvation enthalpies and entropies vary nonmonotonically. The latter occurs due to structural solvent reorganization contributions which are not present in the free energy change due to exact enthalpy-entropy compensation. It is therefore concluded that the enthalpy and entropy of solvation provide more detailed information on the reorganization of solvent molecules around the inserted solute. Hydrophobic interactions in binary urea/water mixtures are next discussed. This system is particularly relevant in biology (protein folding/unfolding), however, changes in the hydrophobic interaction induced by urea molecules are not well understood. In this thesis, this interaction has been studied by calculating the free energy (potential of mean force), enthalpy and entropy changes as a function of the solute-solute distance in water and in aqueous urea (6.9 M) solution. In chapter 5, the potential of mean force in both solution systems is analyzed in terms of its enthalpic and entropic contributions. In particular, contributions of solvent reorganization in the enthalpy and entropy changes are studied separately to better understand what are the changes in interactions in the system that contribute to the free energy of association of the nonpolar solutes. We observe that in aqueous urea the association between nonpolar solutes remains thermodynamically favorable (i.e., as it is the case in pure water). This observation contrasts a long-standing belief that clusters of nonpolar molecules dissolve completely in the presence of urea molecules. The consequences of our observations for the stability of proteins in concentrated urea solutions are discussed in the chapter 6 of the thesis.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and found in the atmosphere, aquatic environment, sediments and soils. For environmental risk assessments and the allocation of the polluter it is important to know the PAH sources. PAH contamination sites are usually the result of anthropogenic processes. Three major sources are known: i) petroleum, including crude oil and its refined products and coals (petrogenic PAHs), ii) burning of organic matter (pyrogenic PAHs) and iii) transformation products of natural organic precursors present in the environment (diagenetic processes). In one case elevated PAH concentrations were found in river bank soils when building a retention area along the Mosel River. The source of the PAHs in this area was unclear and required the investigation of possible sources. To evaluate the PAH distribution along the Mosel River, a section of ~ 160 km along the river and a short section along the Saar River were investigated within this study. Concentrations of the Σ16 EPA PAHs were as high as 81 mg kg-1 dry weight (dw). Additionally, coal particles were identified in some soils, which originated from mining activities in the Saarland region. PAH distribution patterns of the 16 EPA PAHs suggest a mainly pyrogenic origin and in some cases a mixture of pyrogenic and petrogenic origin. For a comprehensive investigation five sampling sites were selected. Two sites were located before the confluence of the Mosel and Saar River, one site at the confluence and two sites after the confluence. The examination included typical forensic methods such as PAH distribution patterns of 45 PAHs (including alkylated PAHs), calculation of PAH ratios, determination of PAH alkyl homologues, n-alkanes, principal component analysis (PCA) and coal petrography. The results revealed a mainly pyrogenic source at sampling sites before the confluence of the two rivers. At and after the confluence, a mixture of pyrogenic and petrogenic inputs were present. With the help of coal petrography, coal derived particles could be identified in these soils. Therefore, coal was suggested to be the petrogenic source. It could be shown that sites with diffuse sources of contaminants, like the bank soils of the Mosel River, are difficult to characterize. As previously mentioned for detailed source identifications, the use of various forensic methods is essential. Determination of PAH alkyl homologue series, biomarkers and isotopes are often recommended. Source identification was evaluated using three different methods (i.e. PAH distribution patterns of an extended PAH spectrum, PAH ratios and analyses of n-alkanes). It was assessed if these methods were sufficient for the initial steps in identifying sources of PAHs in selected samples, and if they could be used for decision-making purposes. Point- and non-point sources were identified by applying the three methods and it could be shown that these relatively simple methods are sufficient in determining the primary source. In a last step of this study two soils (one before the confluence of the Mosel and Saar rivers and one after the confluence), and one sediment of the Mosel River were evaluated by investigating the mutagenic potential of the soils and the sediment with a fluctuation version of the Ames-test. The study showed that coal bearing soils at the Mosel River do not exhibit a greater mutagenic potential than other soils or sediments without coal particles.
Resumo:
Bisher ist bei forensischen Untersuchungen von Explosionen die Rückverfolgung der verwendeten Sprengstoffe begrenzt, da das Material in aller Regel bei der Explosion zerstört wird. Die Rückverfolgung von Sprengstoffen soll mit Hilfe von Identifikations-Markierungssubstanzen erleichtert werden. Diese stellen einen einzigartigen Code dar, der auch nach einer Sprengung wiedergefunden und identifiziert werden kann. Die dem Code zugeordneten, eindeutigen Informationen können somit ausgelesen werden und liefern der Polizei bei der Aufklärung weitere Ansätze.rnZiel der vorliegenden Arbeit ist es, das Verhalten von ausgewählten Seltenerdelementen (SEE) bei Explosion zu untersuchen. Ein auf Lanthanoidphosphaten basierender Identifikations-Markierungsstoff bietet die Möglichkeit, verschiedene Lanthanoide innerhalb eines einzelnen Partikels zu kombinieren, wodurch eine Vielzahl von Codes generiert werden kann. Somit kann eine Veränderung der Ausgangszusammensetzung des Codes auch nach einer Explosion durch die Analyse eines einzelnen Partikels sehr gut nachvollzogen und somit die Eignung des Markierungsstoffes untersucht werden. Eine weitere Zielsetzung ist die Überprüfung der Anwendbarkeit der Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) und Partikelanalyse mittels Rasterelektronenmikroskopie (REM) für die Analyse der versprengten Identifikations-Markierungssubstanzen. rnDie Ergebnisbetrachtungen der ICP-MS-Analyse und REM-Partikelanalyse deuten zusammenfassend auf eine Fraktionierung der untersuchten Lanthanoide oder deren Umsetzungsprodukte nach Explosion in Abhängigkeit ihrer thermischen Belastbarkeit. Die Befunde zeigen eine Anreicherung der Lanthanoide mit höherer Temperaturbeständigkeit in größeren Partikeln, was eine Anreicherung von Lanthanoiden mit niedrigerer Temperaturbeständigkeit in kleineren Partikeln impliziert. Dies lässt sich in Ansätzen durch einen Fraktionierungsprozess in Abhängigkeit der Temperaturstabilität der Lanthanoide oder deren Umsetzungsprodukten erklären. Die der Fraktionierung zugrunde liegenden Mechanismen und deren gegenseitige Beeinflussung bei einer Explosion konnten im Rahmen dieser Arbeit nicht abschließend geklärt werden.rnDie generelle Anwendbarkeit und unter Umständen notwendige, komplementäre Verwendung der zwei Methoden ICP-MS und REM-Partikelanalyse wird in dieser Arbeit gezeigt. Die ICP-MS stellt mit großer untersuchter Probenfläche und hoher Genauigkeit eine gute Methode zur Charakterisierung der Konzentrationsverhältnisse der untersuchten Lanthanoide dar. Die REM-Partikelanalyse hingegen ermöglicht im Falle von Kontamination der Proben mit anderen Lanthanoid-haltigen Partikeln eine eindeutige Differenzierung der Elementvergesellschaftung pro Partikel. Sie kann somit im Gegensatz zur ICP-MS Aufschluss über die Art und Zusammensetzung der Kontamination geben. rnInnerhalb der vorgenommenen Untersuchungen stellte die bei der ICP-MS angewandte Probennahmetechnik eine ideale Art der Probennahme dar. Bei anderen Oberflächen könnte diese jedoch in Folge der in verschiedenen Partikelgrößen resultierenden Fraktionierung zu systematisch verfälschten Ergebnissen führen. Um die generelle Anwendbarkeit der ICP-MS im Hinblick auf die Analyse versprengter Lanthanoide zu gewährleisten, sollte eine Durchführung weiterer Sprengungen auf unterschiedlichen Probenoberflächen erfolgen und gegebenenfalls weitere Probennahme-, Aufschluss- und Anreicherungsverfahren evaluiert werden.rn
Resumo:
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by nowrnentered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbativelyrn$\mathcal{O}(a)$-improved Wilson fermions to produce reliable results in thernchiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. Thisrnthesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phaserntransition in the chiral limit of two-flavour QCD.rnrnThe electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer $q^2$, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to $q^2=0$ which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike $q^2$-value available so far and $q^2=0$, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test chiral perturbation theory ($\chi$PT) and are thereby extrapolated to the physical point and the continuum. The final result in units of the hadronic radius $r_0$ is rn$$ \left\langle r_\pi^2 \right\rangle^{\rm phys}/r_0^2 = 1.87 \: \left(^{+12}_{-10}\right)\left(^{+\:4}_{-15}\right) \quad \textnormal{or} \quad \left\langle r_\pi^2 \right\rangle^{\rm phys} = 0.473 \: \left(^{+30}_{-26}\right)\left(^{+10}_{-38}\right)(10) \: \textnormal{fm} \;, $$rn which agrees well with the results from other measurements in LQCD and experiment. Note, that this is the first continuum extrapolated result for the charge radius from LQCD which has been extracted from measurements of the form factor in the region of small $q^2$.rnrnThe order of the phase transition in the chiral limit of two-flavour QCD and the associated transition temperature are the last unkown features of the phase diagram at zero chemical potential. The two possible scenarios are a second order transition in the $O(4)$-universality class or a first order transition. Since direct simulations in the chiral limit are not possible the transition can only be investigated by simulating at non-zero quark mass with a subsequent chiral extrapolation, guided by the universal scaling in the vicinity of the critical point. The thesis presents the setup and first results from a study on this topic. The study provides the ideal platform to test the potential and limits of todays simulation algorithms at finite temperature. The results from a first scan at a constant zero-temperature pion mass of about 290~MeV are promising, and it appears that simulations down to physical quark masses are feasible. Of particular relevance for the order of the chiral transition is the strength of the anomalous breaking of the $U_A(1)$ symmetry at the transition point. It can be studied by looking at the degeneracies of the correlation functions in scalar and pseudoscalar channels. For the temperature scan reported in this thesis the breaking is still pronounced in the transition region and the symmetry becomes effectively restored only above $1.16\:T_C$. The thesis also provides an extensive outline of research perspectives and includes a generalisation of the standard multi-histogram method to explicitly $\beta$-dependent fermion actions.