2 resultados para Neuronal death

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the perinatal period the developing brain is most vulnerable to inflammation. Prenatal infection or exposure to inflammatory factors can have a profound impact on fetal neurodevelopment with long-term neurological deficits, such as cognitive impairment, learning deficits, perinatal brain damage and cerebral palsy. Inflammation in the brain is characterized by activation of resident immune cells, especially microglia and astrocytes whose activation is associated with a variety of neurodegenerative disorders like Alzheimer´s disease and Multiple sclerosis. These cell types express, release and respond to pro-inflammatory mediators such as cytokines, which are critically involved in the immune response to infection. It has been demonstrated recently that cytokines also directly influence neuronal function. Glial cells are capable of releaseing the pro-inflammatory cytokines MIP-2, which is involved in cell death, and tumor necrosis factor alpha (TNFalpha), which enhances excitatory synaptic function by increasing the surface expression of AMPA receptors. Thus constitutively released TNFalpha homeostatically regulates the balance between neuronal excitation and inhibition in an activity-dependent manner. Since TNFalpha is also involved in neuronal cell death, the interplay between neuronal activity MIP-2 and TNFalpha may control the process of cell death and cell survival in developing neuronal networks. An increasing body of evidence suggests that neuronal activity is important in the regulation of neuronal survival during early development, e.g. programmed cell death (apoptosis) is augmented when neuronal activity is blocked. In our study we were interested on the impact of inflammation on neuronal activity and cell survival during early cortical development. To address this question, we investigated the impact of inflammation on neuronal activity and cell survival during early cortical development in vivo and in vitro. Inflammation was experimentally induced by application of the endotoxin lipopolysaccharide (LPS), which initiates a rapid and well-characterized immune response. I studied the consequences of inflammation on spontaneous neuronal network activity and cell death by combining electrophysiological recordings with multi-electrode arrays and quantitative analyses of apoptosis. In addition, I used a cytokine array and antibodies directed against specific cytokines allowing the identification of the pro-inflammatory factors, which are critically involved in these processes. In this study I demonstrated a direct link between inflammation-induced modifications in neuronal network activity and the control of cell survival in a developing neuronal network for the first time. Our in vivo and in vitro recordings showed a fast LPS-induced reduction in occurrence of spontaneous oscillatory activity. It is indicated that LPS-induced inflammation causes fast release of proinflammatory factors which modify neuronal network activity. My experiments with specific antibodies demonstrate that TNFalpha and to a lesser extent MIP-2 seem to be the key mediators causing activity-dependent neuronal cell death in developing brain. These data may be of important clinical relevance, since spontaneous synchronized activity is also a hallmark of the developing human brain and inflammation-induced alterations in this early network activity may have a critical impact on the survival of immature neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cannabinoid type 1 (CB1) receptor is involved in a plethora of physiological functions and heterogeneously expressed on different neuronal populations. Several conditional loss-of-function studies revealed distinct effects of CB1 receptor signaling on glutamatergic and GABAergic neurons, respectively. To gain a comprehensive picture of CB1 receptor-mediated effects, the present study aimed at developing a gain-of-function approach, which complements conditional loss-of-function studies. Therefore, adeno-associated virus (AAV)-mediated gene delivery and Cre-mediated recombination were combined to recreate an innovative method, which ensures region- and cell type-specific transgene expression in the brain. This method was used to overexpress the CB1 receptor in glutamatergic pyramidal neurons of the mouse hippocampus. Enhanced CB1 receptor activity at glutamatergic terminals caused impairment in hippocampus-dependent memory performance. On the other hand, elevated CB1 receptor levels provoked an increased protection against kainic acid-induced seizures and against excitotoxic neuronal cell death. This finding indicates the protective role of CB1 receptor on hippocampal glutamatergic terminals as a molecular stout guard in controlling excessive neuronal network activity. Hence, CB1 receptor on glutamatergic hippocampal neurons may represent a target for novel agents to restrain excitotoxic events and to treat neurodegenerative diseases. Endocannabinoid synthesizing and degrading enzymes tightly regulate endocannabinoid signaling, and thus, represent a promising therapeutic target. To further elucidate the precise function of the 2-AG degrading enzyme monoacylglycerol lipase (MAGL), MAGL was overexpressed specifically in hippocampal pyramidal neurons. This genetic modification resulted in highly increased MAGL activity accompanied by a 50 % decrease in 2-AG levels without affecting the content of arachidonic acid and anandamide. Elevated MAGL protein levels at glutamatergic terminals eliminated depolarization-induced suppression of excitation (DSE), while depolarization-induced suppression of inhibition (DSI) was unchanged. This result indicates that the on-demand availability of the endocannabinoid 2-AG is crucial for short-term plasticity at glutamatergic synapses in the hippocampus. Mice overexpressing MAGL exhibited elevated corticosterone levels under basal conditions and an increase in anxiety-like behavior, but surprisingly, showed no changes in aversive memory formation and in seizure susceptibility. This finding suggests that 2 AG-mediated hippocampal DSE is essential for adapting to aversive situations, but is not required to form aversive memory and to protect against kainic acid-induced seizures. Thus, specific inhibition of MAGL expressed in hippocampal pyramidal neurons may represent a potential treatment strategy for anxiety and stress disorders. Finally, the method of AAV-mediated cell type-specific transgene expression was advanced to allow drug-inducible and reversible transgene expression. Therefore, elements of the tetracycline-controlled gene expression system were incorporated in our “conditional” AAV vector. This approach showed that transgene expression is switched on after drug application and that background activity in the uninduced state was only detectable in scattered cells of the hippocampus. Thus, this AAV vector will proof useful for future research applications and gene therapy approaches.