12 resultados para Nano-scale materials
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Nanoscience aims at manipulating atoms, molecules and nano-size particles in a precise and controlled manner. Nano-scale control of the thin film structures of organic/polymeric materials is a prerequisite to the fabrication of sophisticated functional devices. The work presented in this thesis is a compilation of various polymer thin films with newly synthesized functional polymers. Cationic and anionic LC amphotropic polymers, p-type and n-type semiconducting polymers with triarylamine, oxadiazole, thiadiazole and triazine moieties are suitable materials to fabricate multilayers by layer-by-layer (LBL) self-assembly with a well defined internal structure. The LBL assembly is the ideal processing technique to prepare thin polymer film composites with fine control over morphology and composition at nano-scale thickness, which may have applications in photo-detectors, light-emitting diodes (LEDs), displays and sensors, as well as in solar cells. The multilayer build-up was investigated with amphotropic LC polymers individually by solution-dipping and spin-coating methods; they showed different internal orders with respect to layering and orientation of the mesogens, as a result of the liquid crystalline phase. The synthesized p-type and n-type semiconducting polymers were examined optically and electrochemically, suggesting that they are favorably promising as hole-(p-type) or electron-(n-type) transport materials in electronic and optoelectronic devices. In addition, we report a successful film deposition of polymers by the vacuum deposition method. The vapor deposition method provides a clean environment; it is solvent free and well suited to sequential depositions in hetero-structured multilayer system. As the potential applications, the fabricated polymer thin films were used as simple electrochromic films and also used as hole transporting layers in LEDs. Electrochemical and electrochromic characterizations of assembled films reveal that the newly synthesized polymers give rise to high contrast ratio and fast switching electrochromic films. The LEDs with vacuum deposited films show dramatic improvements in device characteristics, indicating that the films are promising as hole transporting layers. These are the result of not only the thin nano-scale film structures but also the combination with the high charge carrier mobility of synthesized semiconducting polymers.
Resumo:
Biologische Membranen sind Fettmolekül-Doppelschichten, die sich wie zweidimensionale Flüssigkeiten verhalten. Die Energie einer solchen fluiden Oberfläche kann häufig mit Hilfe eines Hamiltonians beschrieben werden, der invariant unter Reparametrisierungen der Oberfläche ist und nur von ihrer Geometrie abhängt. Beiträge innerer Freiheitsgrade und der Umgebung können in den Formalismus mit einbezogen werden. Dieser Ansatz wird in der vorliegenden Arbeit dazu verwendet, die Mechanik fluider Membranen und ähnlicher Oberflächen zu untersuchen. Spannungen und Drehmomente in der Oberfläche lassen sich durch kovariante Tensoren ausdrücken. Diese können dann z. B. dazu verwendet werden, die Gleichgewichtsposition der Kontaktlinie zu bestimmen, an der sich zwei aneinander haftende Oberflächen voneinander trennen. Mit Ausnahme von Kapillarphänomenen ist die Oberflächenenergie nicht nur abhängig von Translationen der Kontaktlinie, sondern auch von Änderungen in der Steigung oder sogar Krümmung. Die sich ergebenden Randbedingungen entsprechen den Gleichgewichtsbedingungen an Kräfte und Drehmomente, falls sich die Kontaktlinie frei bewegen kann. Wenn eine der Oberflächen starr ist, muss die Variation lokal dieser Fläche folgen. Spannungen und Drehmomente tragen dann zu einer einzigen Gleichgewichtsbedingung bei; ihre Beiträge können nicht mehr einzeln identifiziert werden. Um quantitative Aussagen über das Verhalten einer fluiden Oberfläche zu machen, müssen ihre elastischen Eigenschaften bekannt sein. Der "Nanotrommel"-Versuchsaufbau ermöglicht es, Membraneigenschaften lokal zu untersuchen: Er besteht aus einer porenüberspannenden Membran, die während des Experiments durch die Spitze eines Rasterkraftmikroskops in die Pore gedrückt wird. Der lineare Verlauf der resultierenden Kraft-Abstands-Kurven kann mit Hilfe der in dieser Arbeit entwickelten Theorie reproduziert werden, wenn der Einfluss von Adhäsion zwischen Spitze und Membran vernachlässigt wird. Bezieht man diesen Effekt in die Rechnungen mit ein, ändert sich das Resultat erheblich: Kraft-Abstands-Kurven sind nicht länger linear, Hysterese und nichtverschwindende Trennkräfte treten auf. Die Voraussagen der Rechnungen könnten in zukünftigen Experimenten dazu verwendet werden, Parameter wie die Biegesteifigkeit der Membran mit einer Auflösung im Nanometerbereich zu bestimmen. Wenn die Materialeigenschaften bekannt sind, können Probleme der Membranmechanik genauer betrachtet werden. Oberflächenvermittelte Wechselwirkungen sind in diesem Zusammenhang ein interessantes Beispiel. Mit Hilfe des oben erwähnten Spannungstensors können analytische Ausdrücke für die krümmungsvermittelte Kraft zwischen zwei Teilchen, die z. B. Proteine repräsentieren, hergeleitet werden. Zusätzlich wird das Gleichgewicht der Kräfte und Drehmomente genutzt, um mehrere Bedingungen an die Geometrie der Membran abzuleiten. Für den Fall zweier unendlich langer Zylinder auf der Membran werden diese Bedingungen zusammen mit Profilberechnungen kombiniert, um quantitative Aussagen über die Wechselwirkung zu treffen. Theorie und Experiment stoßen an ihre Grenzen, wenn es darum geht, die Relevanz von krümmungsvermittelten Wechselwirkungen in der biologischen Zelle korrekt zu beurteilen. In einem solchen Fall bieten Computersimulationen einen alternativen Ansatz: Die hier präsentierten Simulationen sagen voraus, dass Proteine zusammenfinden und Membranbläschen (Vesikel) bilden können, sobald jedes der Proteine eine Mindestkrümmung in der Membran induziert. Der Radius der Vesikel hängt dabei stark von der lokal aufgeprägten Krümmung ab. Das Resultat der Simulationen wird in dieser Arbeit durch ein approximatives theoretisches Modell qualitativ bestätigt.
Resumo:
Diese Arbeit ist ein Beitrag zu den schnell wachsenden Forschungsgebieten der Nano-Biotechnologie und Nanomedizin. Sie behandelt die spezifische Gestaltung magnetischer Nanomaterialien für verschiedene biomedizinische Anwendungsgebiete, wie beispielsweise Kontrastmittel für die magnetische Resonanztomographie (MRT) oder "theragnostische" Agenzien für simultane optische/MR Detektion und Behandlung mittels photodynamischer Therapie (PDT).rnEine Vielzahl magnetischer Nanopartikel (NP) mit unterschiedlichsten magnetischen Eigenschaften wurden im Rahmen dieser Arbeit synthetisiert und erschöpfend charakterisiert. Darüber hinaus wurde eine ganze Reihe von Oberflächenmodifizierungsstrategien entwickelt, um sowohl die kolloidale als auch die chemische Stabilität der Partikel zu verbessern, und dadurch den hohen Anforderungen der in vitro und in vivo Applikation gerecht zu werden. Diese Strategien beinhalteten nicht nur die Verwendung bi-funktionaler und multifunktioneller Polymerliganden, sondern auch die Kondensation geeigneter Silanverbindungen, um eine robuste, chemisch inerte und hydrophile Siliziumdioxid- (SiO2) Schale um die magnetischen NP auszubilden.rnGenauer gesagt, der Bildungsmechanismus und die magnetischen Eigenschaften monodisperser MnO NPs wurden ausgiebig untersucht. Aufgrund ihres einzigartigen magnetischen Verhaltens eignen sich diese NPs besonders als (positive) Kontrastmittel zur Verkürzung der longitudinalen Relaxationszeit T1, was zu einer Aufhellung im entsprechenden MRT-Bild führt. Tatsächlich wurde dieses kontrastverbessernde Potential in mehreren Studien mit unterschiedlichen Oberflächenliganden bestätigt. Au@MnO „Nanoblumen“, auf der anderen Seite, sind Vertreter einer weiteren Klasse von Nanomaterialien, die in den vergangenen Jahren erhebliches Interesse in der wissenschaftlichen Welt geweckt hat und oft „Nano-hetero-Materialien“ genannt wird. Solche Nano-hetero-partikel vereinen die individuellen physikalischen und chemischen Eigenschaften der jeweiligen Komponenten in einem nanopartikulärem System und erhöhen dadurch die Vielseitigkeit der möglichen Anwendungen. Sowohl die magnetischen Merkmale von MnO, als auch die optischen Eigenschaften von Au bieten die Möglichkeit, diese „Nanoblumen“ für die kombinierte MRT und optische Bildgebung zu verwenden. Darüber hinaus erlaubt das Vorliegen zweier chemisch unterschiedlicher Oberflächen die gleichzeitige selektive Anbindung von Katecholliganden (auf MnO) und Thiolliganden (auf Au). Außerdem wurde das therapeutische Potential von magnetischen NPs anhand von MnO NPs demonstriert, die mit dem Photosensibilisator Protoporhyrin IX (PP) funktionalisiert waren. Bei Bestrahlung mit sichtbarem Licht initiiert PP die Produktion von zytotoxisch-reaktivem Sauerstoff. Wir zeigen, dass Nierenkrebszellen, die mit PP-funktionalisierten MnO NPs inkubiert wurden nach Bestrahlung mit Laserlicht verenden, während sie ohne Bestrahlung unverändert bleiben. In einem ähnlichen Experiment untersuchten wir die Eigenschaften von SiO2 beschichteten MnO NPs. Dafür wurde eigens eine neuartige SiO2-Beschichtungsmethode entwickelt, die einer nachfolgende weitere Anbindung verschiedenster Liganden und die Einlagerung von Fluoreszenzfarbstoffen durch herkömmliche Silan- Sol-Gel Chemie erlaubt. Die Partikel zeigten eine ausgezeichnete Stabilität in einer ganzen Reihe wässriger Lösungen, darunter auch physiologische Kochsalzlösung, Pufferlösungen und humanes Blutserum, und waren weniger anfällig gegenüber Mn-Ionenauswaschung als einfache PEGylierte MnO NPs. Des Weiteren konnte bewiesen werden, dass die dünne SiO2 Schicht nur einen geringen Einfluss auf das magnetische Verhalten der NPs hatte, so dass sie weiterhin als T1-Kontrastmittel verwendet werden können. Schließlich konnten zusätzlich FePt@MnO NPs hergestellt werden, welche die individuellen magnetischen Merkmale eines ferromagnetischen (FePt) und eines antiferromagnetischen (MnO) Materials vereinen. Wir zeigen, dass wir die jeweiligen Partikelgrößen, und damit das resultierende magnetische Verhalten, durch Veränderung der experimentellen Parameter variieren können. Die magnetische Wechselwirkung zwischen beiden Materialien kann dabei auf Spinkommunikation an der Grenzfläche zwischen beiden NP-Sorten zurückgeführt werden.rn
Resumo:
Der Fokus dieser Doktorarbeit liegt auf der kontrollierten Benetzung von festen Oberflächen, die in vielen Bereichen, wie zum Beispiel in der Mikrofluidik, für Beschichtungen und in biologischen Studien von Zellen oder Bakterien, von großer Bedeutung ist.rnDer erste Teil dieser Arbeit widmet sich der Frage, wie Nanorauigkeit das Benetzungsverhalten, d.h. die Kontaktwinkel und die Pinningstärke, von hydrophoben und superhydrophoben Beschichtungen beeinflusst. Hierfür wird eine neue Methode entwickelt, um eine nanoraue Silika-Beschichtung über die Gasphase auf eine superhydrophobe Oberfläche, die aus rauen Polystyrol-Silika-Kern-Schale-Partikeln besteht, aufzubringen. Es wird gezeigt, dass die Topographie und Dichte der Nanorauigkeiten bestimmt, ob sich die Superhydrophobizität verringert oder erhöht, d.h. ob sich ein Flüssigkeitstropfen im Nano-Wenzel- oder Nano-Cassie-Zustand befindet. Das verstärkte Pinning im Nano-Wenzel-Zustand beruht auf dem Eindringen von Flüssigkeitsmolekülen in die Nanoporen der Beschichtung. Im Nano-Cassie-Zustand dagegen sitzt der Tropfen auf den Nanorauigkeiten, was das Pinning vermindert. Die experimentellen Ergebnisse werden mit molekulardynamischen Simulationen in Bezug gesetzt, die den Einfluss der Oberflächenbeschichtungsdichte und der Länge von fluorinierten Silanen auf die Hydrophobizität einer Oberfläche untersuchen. rnEs wurden bereits verschiedenste Techniken zur Herstellung von transparenten superhydrophoben, d.h. extrem flüssigkeitsabweisenden, Oberflächen entwickelt. Eine aktuelle Herausforderung liegt darin, Funktionalitäten einzuführen, ohne die superhydrophoben Eigenschaften einer Oberfläche zu verändern. Dies ist extrem anspruchsvoll, da funktionelle Gruppen in der Regel hydrophil sind. In dieser Arbeit wird eine innovative Methode zur Herstellung von transparenten superhydrophoben Oberflächen aus Janus-Mikrosäulen mit variierenden Dimensionen und Topographien entwickelt. Die Janus-Säulen haben hydrophobe Seitenwände und hydrophile Silika-Oberseiten, die anschließend selektiv und ohne Verlust der superhydrophoben Eigenschaften der Oberfläche funktionalisiert werden können. Diese selektive Oberflächenfunktionalisierung wird mittels konfokaler Mikroskopie und durch das chemische Anbinden von fluoreszenten Molekülen an die Säulenoberseiten sichtbar gemacht. Außerdem wird gezeigt, dass das Benetzungsverhalten durch Wechselwirkungen zwischen Flüssigkeit und Festkörper in der Nähe der Benetzungslinie bestimmt wird. Diese Beobachtung widerlegt das allgemein akzeptierte Modell von Cassie und Baxter und beinhaltet, dass hydrophile Flächen, die durch mechanischen Abrieb freigelegt werden, nicht zu einem Verlust der Superhydrophobizität führen müssen, wie allgemein angenommen.rnBenetzung kann auch durch eine räumliche Beschränkung von Flüssigkeiten kontrolliert werden, z.B. in mikrofluidischen Systemen. Hier wird eine modifizierte Stöber-Synthese verwendet, um künstliche und natürliche Faser-Template mit einer Silika-Schicht zu ummanteln. Nach der thermischen Zersetzung des organischen Templat-Materials entstehen wohldefinierte Silika-Kanäle und Kanalkreuzungen mit gleichmäßigen Durchmessern im Nano- und Mikrometerbereich. Auf Grund ihrer Transparenz, mechanischen Stabilität und des großen Länge-zu-Durchmesser-Verhältnisses sind die Kanäle sehr gut geeignet, um die Füllgeschwindigkeiten von Flüssigkeiten mit variierenden Oberflächenspannungen und Viskositäten zu untersuchen. Konfokale Mikroskopie ermöglicht es hierbei, die Füllgeschwindigkeiten über eine Länge von mehreren Millimetern, sowie direkt am Kanaleingang zu messen. Das späte Füllstadium kann sehr gut mit der Lucas-Washburn-Gleichung beschrieben werden. Die anfänglichen Füllgeschwindigkeiten sind jedoch niedriger als theoretisch vorhergesagt. Wohingegen die vorhergehenden Abschnitte dieser Arbeit sich mit der quasistatischen Benetzung beschäftigen, spielt hier die Dynamik der Benetzung eine wichtige Rolle. Tatsächlich lassen sich die beobachteten Abweichungen durch einen geschwindigkeitsabhängigen Fortschreitkontaktwinkel erklären und durch dynamische Benetzungstheorien modellieren. Somit löst diese Arbeit das seit langem diskutierte Problem der Abweichungen von der Lucas-Washburn-Gleichung bei kleinen Füllgeschwindigkeiten.
Resumo:
This thesis is based on three main studies, all dealing with structure-property investigation of semicrystalline polyolefin-based composites. Low density poly(ethylene) (LDPE) and isotactic poly(propylene) (iPP) were chosen as parts of the composites materials and they were investigated either separately (as homoploymers), either in blend systems with the composition LDPE/iPP 80/20 or as filled matrix with layered silicate (montmorillonite). The beneficial influence of adding ethylene-co-propylene polymer of amorphous nature, to low density poly(ethylene)/isotactic poly(propylene) (80/20) blend is demonstrated. This effect is expressed by the major improvement of mechanical properties of ternary blends as examined at a macroscopic size scale by means of tensile measurements. The structure investigation also reveals a clear dependence of the morphology on adding ethylene-copropylene polymer. Both the nature and the content of ethylene-co-propylene polymer affect structure and properties. It is further demonstrated that the extent of improvement in mechanical properties is to be related to the molecular details of the compatibilizer. Combination of high molecular weight and high ethylene content is appropriate for the studied system where the poly(ethylene) plays the role of matrix. A new way to characterize semicrystalline systems by means of Brillouin spectroscopy is presented in this study. By this method based on inelastic light scattering, we were able to measure the high frequency elastic constant (c11) of the two microphases in the case where the spherulites size is exhibit size larger than the size of the probing phonon wavelength. In this considered case, the sample film is inhomogeneous over the relevant length scales and there is an access to the transverse phonon in the crystalline phase yielding the elastic constant c44 as well. Isotactic poly(propylene) is well suited for this type of investigation since its morphology can be tailored through different thermal treatment from the melt. Two distinctly different types of films were used; quenched (low crystallinity) and annealed (high crystallinity). The Brillouin scattering data are discussed with respect to the spherulites size, lamellae thickness, long period, crystallinity degree and well documented by AFM images. The structure and the properties of isotactic poly(propylene) matrix modified by inorganic layered silicate, montmorillonite, are discussed with respect to the clay content. Isotactic poly(propylene)-graft-maleic anhydride was used as compatibilizer. It is clearly demonstrated that the property enhancement is largely due to the ability of layered silicate to exfoliate. The intimate dispersion of the nanometer-thick silicate result from a delicate balance of the content ratio between the isotactic poly(propylene)-graft-maleic anhydride compatibilizer and the inorganic clay.
Resumo:
In der vorliegenden Arbeit wurden Materialien und Aufbauten für Hybrid Solarzellen entwickelt und erforscht. rnDer Vergleich zweier bekannter Lochleitermaterialien für Solarzellen in einfachen Blend-Systemen brachte sowohl Einsicht zur unterschiedlichen Eignung der Materialien für optoelektronische Bauelemente als auch neue Erkenntnisse in Bereichen der Langzeitstabilität und Luftempfindlichkeit beider Materialien.rnWeiterhin wurde eine Methode entwickelt, um Hybrid Solarzelle auf möglichst unkomplizierte Weise aus kostengünstigen Materialien darzustellen. Die „Eintopf“-Synthese ermöglicht die unkomplizierte Darstellung eines funktionalen Hybridmaterials für die optoelektronische Anwendung. Mithilfe eines neu entwickelten amphiphilen Blockcopolymers, das als funktionelles Templat eingesetzt wurde, konnten mit einem TiO2-Precursor in einem Sol-Gel Ansatz verschiedene selbstorganisierte Morphologien des Hybridmaterials erhalten werden. Verschiedene Morphologien wurden auf ihre Eignung in Hybrid Solarzellen untersucht. Ob und warum die Morphologie des Hybridsystems die Effizienz der Solarzelle beeinflusst, konnte verdeutlicht werden. Mit der Weiterentwicklung der „Eintopf“-Synthese, durch den Austausch des TiO2-Precursors, konnte die Solarzelleneffizienz von 0.15 auf 0.4 % gesteigert werden. Weiterhin konnte die Übertragbarkeit des Systems durch den erfolgreichen Austausch des Halbleiters TiO¬2 mit ZnO bewiesen werden.rn
Resumo:
In the field of organic optoelectronics, the nanoscale structure of the materials has huge im-pact on the device performance. Here, scanning force microscopy (SFM) techniques become increasingly important. In addition to topographic information, various surface properties can be recorded on a nanometer length scale, such as electrical conductivity (conductive scanning force microscopy, C-SFM) and surface potential (Kelvin probe force microscopy, KPFM).rnrnIn the context of this work, the electrical SFM modes were applied to study the interplay be-tween morphology and electrical properties in hybrid optoelectronic structures, developed in the group of Prof. J. Gutmann (MPI-P Mainz). In particular, I investigated the working prin-ciple of a novel integrated electron blocking layer system. A structure of electrically conduct-ing pathways along crystalline TiO2 particles in an insulating matrix of a polymer derived ceramic was found and insulating defect structures could be identified. In order to get insights into the internal structure of a device I investigated a working hybrid solar cell by preparing a cross cut with focused ion beam polishing. With C-SFM, the functional layers could be identified and the charge transport properties of the novel active layer composite material could be studied. rnrnIn C-SFM, soft surfaces can be permanently damaged by (i) tip induced forces, (ii) high elec-tric fields and (iii) high current densities close to the SFM-tip. Thus, an alternative operation based on torsion mode topography imaging in combination with current mapping was intro-duced. In torsion mode, the SFM-tip vibrates laterally and in close proximity to the sample surface. Thus, an electrical contact between tip and sample can be established. In a series of reference experiments on standard surfaces, the working mechanism of scanning conductive torsion mode microscopy (SCTMM) was investigated. Moreover, I studied samples covered with free standing semiconducting polymer nano-pillars that were developed in the group of Dr. P. Theato (University Mainz). The application of SCTMM allowed non-destructive imag-ing of the flexible surface at high resolution while measuring the conductance on individual pillarsrnrnIn order to study light induced electrical effects on the level of single nanostructures, a new SFM setup was built. It is equipped with a laser sample illumination and placed in inert at-mosphere. With this photoelectric SFM, I investigated the light induced response in function-alized nanorods that were developed in the group of Prof. R. Zentel (University Mainz). A block-copolymer containing an anchor block and dye moiety and a semiconducting conju-gated polymer moiety was synthesized and covalently bound to ZnO nanorods. This system forms an electron donor/acceptor interface and can thus be seen as a model system of a solar cell on the nanoscale. With a KPFM study on the illuminated samples, the light induced charge separation between the nanorod and the polymeric corona could not only be visualized, but also quantified.rnrnThe results demonstrate that electrical scanning force microscopy can study fundamental processes in nanostructures and give invaluable feedback to the synthetic chemists for the optimization of functional nanomaterials.rn
Resumo:
This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.
Resumo:
Funktionelle Materialien sind in einer Vielzahl von Materialklassen wie Polymeren, Biomaterialien, Gläsern, Metallen, Keramiken und Verbundwerkstoffen anzutreffen. Sie besitzen eine spezifische, intrinsische Funktion, welche auf dem zu Grunde liegenden Design der Verbindung beruht. In dieser Dissertation wurden zwei funktionelle Materialien studiert: ein durch Phosphonatadditive mechanisch verstärktes Epoxidharz und protonenleitende Blockcopolymere, welche Potential für den Einsatz in Brennstoffzellen besitzen. Die Materialien wurden vorranging mittels Festkörper Kernspinresonanzspektroskopie (NMR) untersucht, welche sich besonders für die Untersuchung der lokalen Struktur und Dynamik amorpher Polymere eignet.rnrnPhosphonate sind eine neue Klasse sogenannter molekularer Verstärker, die die mechanischen und thermischen Kennzahlen geeigneter Epoxidharze erhöhen. Es wurde eine Reihe von Phosphonatderivaten synthetisiert um systematische den Effekt der chemischen Struktur und des Aushärteprozesses auf die Eigenschaften eines Modellepoxidharzes zu untersuchen. Die Aufklärung des Verstärkungsmechanismus ergab, dass die Phosphonate währen der thermischen Aushärtung des Epoxidharzes die Aminofunktionalitäten des Härters alkylieren. Dies führt zu der Bildung von homogen verteilten, positiven Ladungen auf der Polymerkette, während negative Phosphonatanionen als Gegenionen wirken. Es konnte gezeigt werden, dass die Struktur des Additivs einen entscheidenden Einfluss auf die Eigenschaften des ausgehärteten Epoxidharzes sowie seine Alterung, d.h. den allmählichen Verlust der Verstärkung, hat.rnrnDes Weiteren wurde eine Serie von sulfonierten Blockcopolymeren synthetisiert. Es handelte sich hierbei um Multiblockcopolyimide, wobei die Polymerketten aus einer alternierenden Sequenz von sulfonierten (hydrophilen) und unsulfonierten (hydrophoben) Blöcken bestanden. Diese Polymere bilden nach einem ‚solvent cast‘ Prozess feste, duktile und transparente Membrane. Sulfonierte Blockcopolymermembrane zeigten im Vergleich mit statistisch sulfonierten Vergleichssubstanzen eine erhöhte Leitfähigkeit, sowie eine erhöhte Wasseraufnahme. Dies wurde auf eine bessere Phasenseparation im Festkörper zurückgeführt. Die Morphologie der Filme war eindeutig anisotrop und stark abhängig von der Blocklänge der Polymere. Durch diverse Festkörper-NMR Methoden konnte gezeigt werden, dass die Protonenmobilität in den Membranen von der betrachteten Längenskala abhängig ist und nicht notwendigerweise mit der makroskopisch beobachteten Leitfähigkeit korreliert.
Resumo:
Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.
Resumo:
Die vorliegende Arbeit behandelt die Anwendung der Rasterkraftmikroskopie auf die Untersuchung mesostrukturierter Materialien. Mesostrukturierte Materialien setzen sich aus einzelnen mesoskopen Bausteinen zusammen. Diese Untereinheiten bestimmen im Wesentlichen ihr charakteristisches Verhalten auf äußere mechanische oder elektrische Reize, weshalb diesen Materialien eine besondere Rolle in der Natur sowie im täglichen Leben zukommt. Ein genaues Verständnis der Selbstorganisation dieser Materialien und der Wechselwirkung der einzelnen Bausteine untereinander ist daher von essentieller Bedeutung zur Entwicklung neuer Synthesestrategien sowie zur Optimierung ihrer Materialeigenschaften. Die Charakterisierung dieser mesostrukturierten Materialien erfolgt üblicherweise mittels makroskopischer Analysemethoden wie der dielektrischen Breitbandspektroskopie, Thermogravimetrie sowie in Biegungsexperimenten. In dieser Arbeit wird gezeigt, wie sich diese Analysemethoden mit der Rasterkraftmikroskopie verbinden lassen, um mesostrukturierte Materialien zu untersuchen. Die Rasterkraftmikroskopie bietet die Möglichkeit, die Oberfläche eines Materials abzubilden und zusätzlich dazu seine quantitativen Eigenschaften, wie die mechanische Biegefestigkeit oder die dielektrische Relaxation, zu bestimmen. Die Übertragung makroskopischer Analyseverfahren auf den Nano- bzw. Mikrometermaßstab mittels der Rasterkraftmikroskopie erlaubt die Charakterisierung von räumlich sehr begrenzten Proben bzw. von Proben, die nur in einer sehr kleinen Menge (<10 mg) vorliegen. Darüberhinaus umfasst das Auflösungsvermögen eines Rasterkraftmikroskops, welche durch die Größe seines Federbalkens (50 µm) sowie seines Spitzenradius (5 nm) definiert ist, genau den Längenskalenbereich, der einzelne Atome mit der makroskopischen Welt verbindet, nämlich die Mesoskala. In dieser Arbeit werden Polymerfilme, kolloidale Nanofasern sowie Biomineralien ausführlicher untersucht.rnIm ersten Projekt werden mittels Rasterkraftmikroskopie dielektrische Spektren von mischbaren Polymerfilmen aufgenommen und mit ihrer lokalen Oberflächenstruktur korreliert. Im zweiten Projekt wird die Rasterkraftmikroskopie eingesetzt, um Biegeexperimente an kolloidalen Nanofasern durchzuführen und so ihre Brucheigenschaften genauer zu untersuchen. Im letzten Projekt findet diese Methode Anwendung bei der Charakterisierung der Biegeeigenschaften von Biomineralien. Des Weiteren erfolgt eine Analyse der organischen Zusammensetzung dieser Biomineralien. Alle diese Projekte demonstrieren die vielseitige Einsetzbarkeit der Rasterkraftmikroskopie zur Charakterisierung mesostrukturierter Materialien. Die Korrelation ihrer mechanischen und dielektrischen Eigenschaften mit ihrer topographischen Beschaffenheit erlaubt ein tieferes Verständnis der mesoskopischen Materialien und ihres Verhaltens auf die Einwirkung äußerer Stimuli.rn
Resumo:
The corrosion of metallic materials is a crucial issue on an economical and ecological scale. Corrosion protection becomes then necessarily needed. The main focus of the thesis is to develop stimuli-responsive nanocontainers for self-healing in corrosion protection. A nanocontainer is efficient if distinct payloads can be selectively released via different stimuli because unwanted and unspecific release can be avoided. For anti-corrosion, the wanted nanocontainer is the one able to release its self-healing agents or corrosion inhibitors upon change of pH- or/and redox-potential due to the variation of these two signals at the corroded sites. Conducting polymers such as polyaniline (PANI) were chosen for building the shell of capsules due to their important characteristics of being both pH- and redox responsive.