7 resultados para NANOPARTICLE SYNTHESIS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden verschiedene Methoden der Synthese von Zinn(IV)oxid Nanopartikeln, deren Stabilisierung durch unterschiedliche Surfactants und der Einbau der Nanomaterialien in PMMA beschrieben und die erhaltenen Materialien charakterisiert. Die Darstellung der Zinnoxid Nanopartikel wurde über drei verschiedene Synthesewege durchgeführt: a) Polymeric Precursor Methode, b) Solvothermal-Synthese und c) säurekatalysierte Fällungsreaktion. Im Rahmen von a) konnte neben der thermodynamisch stabilen Phase von Zinn(IV)oxid ebenfalls die metastabile orthorhombische Phase synthetisiert werden. Durch eine Analyse der Pyrolysebedingungen konnte der Kristallisationsmechanismus des Zinnoxids ausgehend vom Precursor bis zur tetragonalen Phase des Zinn(IV)oxid diskutiert werden. Die Synthesemethoden b) und c) boten sich zur Darstellung von oberflächenmodifizierten Zinnoxid Nanopartikeln an. Als Surfactant benutzte man unter anderem Alkylphosphonsäuren, da eine hydrophobe Oberfläche die Dispersion in MMA ermöglichte. Abschließend wurde eine radikalische in situ-Polymerisation von MMA in Gegenwart von oberflächenmodifizierten Partikeln durchgeführt. Der erhaltene Verbundwerkstoff zeichnete sich durch eine erhöhte thermische Stabilität aufgrund weniger Strukturdefekte des Polymers aus. Durch eine Untersuchung des Polymerisationsmechanismus konnte die Wirkung der oberflächenmodifizierten Nanopartikel auf die Polymerisation veranschaulicht werden. Aufgrund der nicht homogenen Verteilung der Nanopartikel im Verbundwerkstoff konnte jedoch keine Charakterisierung der optischen Eigenschaften durchgeführt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physicochemical properties of nanoparticles make them suitable for biomedical applications. Due to their ‘straight-forward’ synthesis, their known biocompatibility, their strong optical properties, their ability for targeted drug delivery and their uptake potential into cells gold nanoparticles are highly interesting for biomedical applications. In particular, the therapy of brain diseases (neurodegenerative diseases, ischemic stroke) is a challenge for contemporary medicine and gold nanoparticles are currently being studied in the hope of improving drug delivery to the brain.rnIn this thesis three major conclusions from the generated data are emphasized.rn1. After improvement of the isolation protocol and culture conditions, the formation of a monolayer of porcine brain endothelial cells on transwell filters lead to a reproducible and tight in vitro monoculture which exhibited in vivo blood brain barrier (BBB) characteristics. The transport of nanoparticles across the barrier was studied using this model.rn2. Although gold nanoparticles are known to be relatively bioinert, contaminants of the nanoparticle synthesis (i.e. CTAB or sodium citrate) increased the cytotoxicity of gold nanoparticles, as shown by various publications. The results presented in this thesis demonstrate that contaminants of the nanoparticle synthesis such as sodium citrate increased the cytotoxicity of the gold nanoparticles in endothelial cells but in a more dramatic manner in epithelial cells. Considering the increased uptake of these particles by epithelial cells compared to endothelial cells it was demonstrated that the observed decrease of cell viability appeared to be related to the amount of internalized gold nanoparticles in combination with the presence of the contaminant.rn3. Systematically synthesized gold nanoparticles of different sizes with a variety of surface modifications (different chemical groups and net charges) were investigated for their uptake behaviour and functional impairment of endothelial cells, one of the major cell types making up the BBB. The targeting of these different nanoparticles to endothelial cells from different parts of the body was investigated in a comparative study of human microvascular dermal and cerebral endothelial cells. In these experiments it was demonstrated that different properties of the nanoparticles resulted in a variety of uptake patterns into cells. Positively charged gold nanoparticles were internalized in high amounts, while PEGylated nanoparticles were not taken up by both cell types. Differences in the uptake behavior were also demonstrated for neutrally charged particles of different sizes, coated with hydroxypropylamine or glucosamine. Endothelial cells of the brain specifically internalized 35nm neutrally charged hydroxypropylamine-coated gold nanoparticles in larger amounts compared to dermal microvascular endothelial cells, indicating a "targeting" for brain endothelial cells. Co-localization studies with flotillin-1 and flotillin-2 showed that the gold nanoparticles were internalized by endocytotic pathways. Furthermore, these nanoparticles exhibited transcytosis across the endothelial cell barrier in an in vitro BBB model generated with primary porcine brain endothelial cells (1.). In conclusion, gold nanoparticles with different sizes and surface characteristics showed different uptake patterns in dermal and cerebral endothelial cells. In addition, gold nanoparticles with a specific size and defined surface modification were able to cross the blood-brain barrier in a porcine in vitro model and may thus be useful for controlled delivery of drugs to the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasmonic nanoparticles exhibit strong light scattering efficiency due to the oscillations of their conductive electrons (plasmon), which are excited by light. For rod-shaped nanoparticles, the resonance position is highly tunable by the aspect ratio (length/width) and the sensitivity to changes in the refractive index in the local environment depends on their diameter, hence, their volume. Therefore, rod-shaped nanoparticles are highly suitable as plasmonic sensors.rnWithin this thesis, I study the formation of gold nanorods and nanorods from a gold-copper alloy using a combination of small-angle X-ray scattering and optical extinction spectroscopy. The latter represents one of the first metal alloy nanoparticle synthesis protocols for producing rod-shaped single crystalline gold-copper (AuxCu(1-x)) alloyed nanoparticles. I find that both length and width independently follow an exponential growth behavior with different time-constants, which intrinsically leads to a switch between positive and negative aspect ratio growth during the course of the synthesis. In a parameter study, I find linear relations for the rate constants as a function of [HAuCl4]/[CTAB] ratio and [HAuCl4]/[seed] ratio. Furthermore, I find a correlation of final aspect ratio and ratio of rate constants for length and width growth rate for different [AgNO3]/[HAuCl4] ratios. I identify ascorbic acid as the yield limiting species in the reaction by the use of spectroscopic monitoring and TEM. Finally, I present the use of plasmonic nanorods that absorb light at 1064nm as contrast agents for photoacoustic imaging (BMBF project Polysound). rnIn the physics part, I present my automated dark-field microscope that is capable of collecting spectra in the range of 450nm to 1750 nm. I show the characteristics of that setup for the spectra acquisition in the UV-VIS range and how I use this information to simulate measurements. I show the major noise sources of the measurements and ways to reduce the noise and how the combination of setup charactersitics and simulations of sensitivity and sensing volume can be used to select appropriate gold rods for single unlabeled protein detection. Using my setup, I show how to estimate the size of gold nano-rods directly from the plasmon linewidth measured from optical single particle spectra. Then, I use this information to reduce the distribution (between particles) of the measured plasmonic sensitivity S by 30% by correcting for the systematic error introduced from the variation in particle size. I investigate the single particle scattering of bowtie structures — structures consisting of two (mostly) equilateral triangles pointing one tip at each other. I simulate the spectra of the structures considering the oblique illumination angle in my setup, which leads to additional plasmon modes in the spectra. The simulations agree well with the measurements form a qualitative point of view.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decades have witnessed significant and rapid progress in polymer chemistry and molecular biology. The invention of PCR and advances in automated solid phase synthesis of DNA have made this biological entity broadly available to all researchers across biological and chemical sciences. Thanks to the development of a variety of polymerization techniques, macromolecules can be synthesized with predetermined molecular weights and excellent structural control. In recent years these two exciting areas of research converged to generate a new type of nucleic acid hybrid material, consisting of oligodeoxynucleotides and organic polymers. By conjugating these two classes of materials, DNA block copolymers are generated exhibiting engineered material properties that cannot be realized with polymers or nucleic acids alone. Different synthetic strategies based on grafting onto routes in solution or on solid support were developed which afforded DNA block copolymers with hydrophilic, hydrophobic and thermoresponsive organic polymers in good yields. Beside the preparation of DNA block copolymers with a relative short DNA-segment, it was also demonstrated how these bioorganic polymers can be synthesized exhibiting large DNA blocks (>1000 bases) applying the polymerase chain reaction. Amphiphilic DNA block copolymers, which were synthesized fully automated in a DNA synthesizer, self-assemble into well-defined nanoparticles. Hybridization of spherical micelles with long DNA templates that encode several times the sequence of the micelle corona induced a transformation into rod-like micelles. The Watson-Crick motif aligned the hydrophobic polymer segments along the DNA double helix, which resulted in selective dimer formation. Even the length of the resulting nanostructures could be precisely adjusted by the number of nucleotides of the templates. In addition to changing the structural properties of DNA-b-PPO micelles, these materials were applied as 3D nanoscopic scaffolds for organic reactions. The DNA strands of the corona were organized by hydrophobic interactions of the organic polymer segments in such a fashion that several DNA-templated organic reactions proceeded in a sequence specific manner; either at the surface of the micelles or at the interface between the biological and the organic polymer blocks. The yields of reactions employing the micellar template were equivalent or better than existing template architectures. Aside from its physical properties and the morphologies achieved, an important requirement for a new biomaterial is its biocompatibility and interaction with living systems, i.e. human cells. The toxicity of the nanoparticles was analyzed by a cell proliferation assay. Motivated by the non-toxic nature of the amphiphilic DNA block copolymers, these nanoobjects were employed as drug delivery vehicles to target the anticancer drug to a tumor tissue. The micelles obtained from DNA block copolymers were easily functionalized with targeting units by hybridization. This facile route allowed studying the effect of the amount of targeting units on the targeting efficacy. By varying the site of functionalization, i.e. 5’ or 3’, the outcome of having the targeting unit at the periphery of the micelle or in the core of the micelle was studied. Additionally, these micelles were loaded with an anticancer drug, doxorubicin, and then applied to tumor cells. The viability of the cells was calculated in the presence and absence of targeting unit. It was demonstrated that the tumor cells bearing folate receptors showed a high mortality when the targeting unit was attached to the nanocarrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegenden Dissertation beschäftigt sich mit plasmonischen Nanopartikeln, deren Wechselwirkung mit Licht in einer Plasmonenschwingung resultiert. Suspensionen dieser Partikel zeigen kräftige Farben, da sich die Resonanzfrequenz der Plasmonenschwingung im sichtbaren Bereich des elektromagnetischen Spektrum befindet. Durch die Veränderung interner (Material, Größe, Form) oder externer Parameter (Brechungsindex der Umgebung, Abstand zu anderen plasmonischen Partikeln) lässt sich die Farbe der Partikel verändern, eine Verschiebung der Resonanzfrequenz kann beobachtet werden. Ihre Sensitivität gegenüber äußeren Bedingungen ist der Grund, weshalb plasmonische Nanopartikel als Sensoren eingesetzt werden können. Wichtig ist hierbei nicht nur, dass die Partikel eine hohe Sensitivität zeigen, sondern auch die Möglichkeit, reproduzierbar Partikel zu synthetisieren, die experimentellen Anforderungen entsprechen. In der vorliegenden Arbeit wird das Wachstum von reinen Gold- und mit Silber beschichteten Goldnanostäbchen untersucht. Des Weiteren werden plasmonische Nanopartikel als Orientierungs-, Brechungsindex- und Abstandssensoren verwendet. Die Synthese von Goldnanostäbchen erfolgt auf nasschemischen Weg, ihr anisotropes Wachstum aus isotropen Keimen wird durch zahlreiche Faktoren beeinflusst. In diesem Zusammenhang wurde ein Wachstumsmodell entwickelt, das neben dem Vorhandensein eines Stabilisators auch die Rolle von Bromid- und Silberionen herausstellt, die durch selektive Adsorption das Wachstum bestimmter Kristallflächen inhibieren. Zudem konnte gezeigt werden, dass die Potentialdifferenz zwischen Reduktions- und Oxidationsmittel klein sein muss, um ein langsames selektives Wachstum zu gewährleisten. rnDurch das Aufwachsen einer dünnen Silberschicht auf Goldnanostäbchen verbessert sich deren Qualität im Bezug auf die heterogene Linienbreite. Der “Plasmonic Focusing Effect”, die Änderung der Steigung des linearen Zusammenhangs von Plasmonenresonanz und Aspektverhältnis, konnte theoretisch berechnet und experimentell verifiziert werden. Durch die Aufnahme zeitaufgelöster Spektren und die Untersuchung des Verlaufs der Reaktion wurden sowohl Reaktionsordnung, als auch Aktivierungsenergie ermittelt. Das so gefundene kinetische Model erlaubt zudem die Vorhersage des Reaktionsprodukts zu verschiedenen Zeiten. rnEinzelne Goldnanostäbchen wurden in einer Gelmatrix bei verschiedenen Temperaturen untersucht, die Aufnahme der zeitlichen Variation der polarisationsabhängigen Streuintensität konnte genutzt werden, um den Kollaps des Gels zu charakterisieren. Neben der Verwendung einzelner plasmonischer Nanopartikel wurden auch Dimere, bestehend aus zwei Goldnanokugeln, untersucht. Nach der Kalibrierung der Resonanzfrequenz gegenüber des Abstandes der beiden Partikel durch externe Methoden (Lichtstreuung, Cryo- Elektronenmikroskopie) wurde der so gefundene exponentielle Zusammenhang verwendet, um sowohl den Brechungsindex der Umgebung, als auch den Abstand der beiden Goldnanokugeln zu bestimmen. Des Weiteren wurden Goldnanopartikeldimere benutzt, um ein als Linker verwendetes thermoresponsives Elastin-Polymer bei verschiedenen Temperaturen zu charakterisieren. Neben Aggregaten aus zwei Goldnanokugeln wurden auch so genannte “core-satellite” Strukturen synthetisiert, die um einen großen Goldnanopartikelkern viele kleine Goldnanopartikel tragen. Diese Partikel haben eine theoretisch vorhergesagte höhere Sensitivität gegenüber Brechungsindexänderungen, was in ersten Experimenten gezeigt werden konnte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer-nanoparticle hybrids show synergistic effects, demonstrating both, the unique properties of nanosized structures and the good processability and functionalities of polymeric materials. This work shows the synthesis and application of block copolymers containing a soluble, functional block and a short anchor block, which efficiently binds to the surface of nanocrystals. We functionalized anisotropic, semiconducting nanoparticles, which can be dissolved in organic and polymeric matrices upon modification. The modified nanorods have the ability to form liquid crystalline phases, which behave similar to low molecular liquid crystals with a reversible clearing behaviour. These liquid crystalline phases could also be obtained in hole conducting matrices. For a macroscopic orientation of the nanorods, electric fields were applied and a switching (in analogy to known liquid crystals) to a homeotropic orientation was observed.rnBy introduction of dye molecules in the anchor block of a hole conducting block copolymer, all essential components of a solar cell can be combined in a single particle. Light absorption of the dye induces the injection of electrons into the particles, followed by a charging, that was monitored by a special AFM technique.rnLight emitting nanocrystals were functionalized analogously with a hole transporting polymer. The stability of the particles could be enhanced by the sterically stabilizing polymer corona and the particles showed improved properties in terms of processing. We applied these hybrid materials in light emitting devices, which showed better characteristics due to an improved hole injection and well dispersed emitting particles in the active device layer.rnThe work shows the broad spectrum of properties and applications based on the synergistic effects in hybrid and composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infektiöse Komplikationen im Zusammenhang mit Implantaten stellen einen Großteil aller Krankenhausinfektionen dar und treiben die Gesundheitskosten signifikant in die Höhe. Die bakterielle Kolonisation von Implantatoberflächen zieht schwerwiegende medizinische Konsequenzen nach sich, die unter Umständen tödlich verlaufen können. Trotz umfassender Forschungsaktivitäten auf dem Gebiet der antibakteriellen Oberflächenbeschichtungen ist das Spektrum an wirksamen Substanzen aufgrund der Anpassungsfähigkeit und Ausbildung von Resistenzen verschiedener Mikroorganismen eingeschränkt. Die Erforschung und Entwicklung neuer antibakterieller Materialien ist daher von fundamentaler Bedeutung.rnIn der vorliegenden Arbeit wurden auf der Basis von Polymernanopartikeln und anorganischen/polymeren Verbundmaterialien verschiedene Systeme als Alternative zu bestehenden antibakteriellen Oberflächenbeschichtungen entwickelt. Polymerpartikel finden Anwendung in vielen verschiedenen Bereichen, da sowohl Größe als auch Zusammensetzung und Morphologie vielseitig gestaltet werden können. Mit Hilfe der Miniemulsionstechnik lassen sich u. A. funktionelle Polymernanopartikel im Größenbereich von 50-500 nm herstellen. Diese wurde im ersten System angewendet, um PEGylierte Poly(styrol)nanopartikel zu synthetisieren, deren anti-adhesives Potential in Bezug auf P. aeruginosa evaluiert wurde. Im zweiten System wurden sog. kontakt-aktive kolloide Dispersionen entwickelt, welche bakteriostatische Eigenschaften gegenüber S. aureus zeigten. In Analogie zum ersten System, wurden Poly(styrol)nanopartikel in Copolymerisation in Miniemulsion mit quaternären Ammoniumgruppen funktionalisiert. Als Costabilisator diente das zuvor quaternisierte, oberflächenaktive Monomer (2-Dimethylamino)ethylmethacrylat (qDMAEMA). Die Optimierung der antibakteriellen Eigenschaften wurde im nachfolgenden System realisiert. Hierbei wurde das oberflächenaktive Monomer qDMAEMA zu einem oberflächenaktiven Polyelektrolyt polymerisiert, welcher unter Anwendung von kombinierter Miniemulsions- und Lösemittelverdampfungstechnik, in entsprechende Polyelektrolytnanopartikel umgesetzt wurde. Infolge seiner oberflächenaktiven Eigenschaften, ließen sich aus dem Polyelektrolyt stabile Partikeldispersionen ohne Zusatz weiterer Tenside ausbilden. Die selektive Toxizität der Polyelektrolytnanopartikel gegenüber S. aureus im Unterschied zu Körperzellen, untermauert ihr vielversprechendes Potential als bakterizides, kontakt-aktives Reagenz. rnAufgrund ihrer antibakteriellen Eigenschaften wurden ZnO Nanopartikel ausgewählt und in verschiedene Freisetzungssysteme integriert. Hochdefinierte eckige ZnO Nanokristalle mit einem mittleren Durchmesser von 23 nm wurden durch thermische Zersetzung des Precursormaterials synthetisiert. Durch die nachfolgende Einkapselung in Poly(L-laktid) Latexpartikel wurden neue, antibakterielle und UV-responsive Hybridnanopartikel entwickelt. Durch die photokatalytische Aktivierung von ZnO mittels UV-Strahlung wurde der Abbau der ZnO/PLLA Hybridnanopartikel signifikant von mehreren Monaten auf mehrere Wochen verkürzt. Die Photoaktivierung von ZnO eröffnet somit die Möglichkeit einer gesteuerten Freisetzung von ZnO. Im nachfolgenden System wurden dünne Verbundfilme aus Poly(N-isopropylacrylamid)-Hydrogelschichten mit eingebetteten ZnO Nanopartikeln hergestellt, die als bakterizide Oberflächenbeschichtungen gegen E. coli zum Einsatz kamen. Mit minimalem Gehalt an ZnO zeigten die Filme eine vergleichbare antibakterielle Aktivität zu Silber-basierten Beschichtungen. Hierbei lässt sich der Gehalt an ZnO relativ einfach über die Filmdicke einstellen. Weiterhin erwiesen sich die Filme mit bakteriziden Konzentrationen an ZnO als nichtzytotoxisch gegenüber Körperzellen. Zusammenfassend wurden mehrere vielversprechende antibakterielle Prototypen entwickelt, die als potentielle Implantatbeschichtungen auf die jeweilige Anwendung weiterhin zugeschnitten und optimiert werden können.