5 resultados para Myelin-associated Glycoprotein

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Während der Myelinbildung im zentralen Nervensystem (ZNS) umwinden Oligodendrozyten mit Ausläufern ihrer Plasmamembran mehrfach das Axon. Myelin ermöglicht die saltatorische Erregungsweiterleitung entlang der Axone und ist zudem für die Aufrechterhaltung der axonalen Integrität erforderlich (Edgar and Garbern, 2004). Ein Oligodendrozyt myelinisiert bis zu 40 Axonsegmente gleichzeitig, wodurch er in seiner aktivsten Myelinisierungsphase 5 bis 50 x 103 µm2 Membranfläche pro Tag produziert (Pfeiffer et al., 1993). Die vollständig ausgebildete Myelinscheide besteht aus Subdomänen mit charakteristischen Protein- und Lipidzusammensetzungen. Die Entwicklung und der Erhalt der komplexen Myelinmembran erfordert die kontinuierliche Kommunikation zwischen Neuronen und Glia-Zellen, die Koordination der Protein- und Lipidsynthese sowie angepasste intrazelluläre Sortier- und Transportwege der Myelinkomponenten. Über die molekularen Mechanismen, die zur Ausbildung des Myelins und seiner Domänen führen, ist bisher nicht sehr viel bekannt. Im Rahmen dieser Arbeit wurden Endo- und Exozytosemechanismen von Myelinproteinen analysiert. Dabei wurden drei Proteine untersucht, die in unterschiedlichen Subdomänen der Myelinmembran des ZNS lokalisiert sind. Das Hauptmyelinprotein Proteolipid Protein (PLP), das Myelin-assoziierte Glykoprotein (MAG) und das Myelin Oligodendrozyten Glykoprotein (MOG). Die Exozytose des Hauptmyelinproteins PLP erfolgt möglicherweise durch sekretorische Lysosomen (Trajkovic et al., 2006) und ist Ca2+-abhängig. Interessanterweise konnte gezeigt werden, dass PLP, MAG und MOG unterschiedlichen endosomalen Transportwegen und Sortierprozessen unterliegen. PLP wird über einen Clathrin-unabhängigen, MAG und MOG hingegen über einen Clathrin-abhängigen Mechanismus endozytiert. Zudem gelangen die Proteine zu unterschiedlichen endosomalen Zielkompartimenten und recyceln zu verschiedenen oligodendroglialen Membrandomänen. Diese Ergebnisse legen nahe, dass die endosomale Sortierung und das Recycling der Myelinproteine, die für die Bildung der Subdomänen erforderliche Umgestaltung der oligodendroglialen Plasmamembran unterstützen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alpha- und Beta-Dystroglycan, die zentralen Komponenten eines multimeren Dystrophin-assoziierten Proteinkomplexes wurden bislang im Wesentlichen in der Skelettmuskulatur charakterisiert. Dort stellt der DAG eine molekulare Verbindung zwischen dem Aktin-Zytoskelett der Muskelfaser und einer Basalmembran her, die die einzelne Muskelfaser umhüllt. Dystroglycan vermittelt auf diese Weise die mechanische Festigkeit der Muskelfasern während der Kontraktion. Außerdem dient der DAG als Gerüst für die Anlagerung von Proteinen. Mutationen in den strukturgebenden oder signaltransduzierenden Proteinen des DAG verursachen Muskeldystrophie. Besonders schwere Muskeldystrophien werden durch Mutationen hervorgerufen, die eine veränderte Glykosylierung von Dystroglycan und damit eine verminderte Bindung von alpha-Dystroglycan an Matrixproteine verursachen. Dies führt zu einer Beeinträchtigung der Basalmembranbiosynthese sowie sich daraus ergebende Störungen in der Migration, Schichtung und Differenzierung von Nervenzellen im ZNS. Welche Rolle Dystroglycan im sich entwickelnden ZNS spielt, sollte in dieser Arbeit an der Hühnerretina untersucht werden. Durch Anwendung der in ovo Elektroporation wurden zwei modifizierte Dystroglycankonstrukte in Neuroepithelzellen transfiziert. Die Überexpression eines verkürtzten Dystroglycanproteins, verursachte eine Abrundung der Neuroepithelzellen. Dies führte zur Hyperproliferation der Zellen deren Folge die Bildung von Verdickungen in der Retina war sowie eine verstärkte Bildung postmitotischer Neurone. Die Elektroporation eines nicht-spaltbaren Dystroglycans, führte im Gegensatz dazu zu einer Abnahme der Anzahl proliferierender und differenzierender Nervenzellen. Als Konsequenz veränderte sich die Orientierung der Axone von retinalen Ganglienzellen. Nach der Überexpression des verkürzten Dystroglycans verloren die Axone ihre zentripetale Orientierung auf den optischen Nerv, während die Elektroporation von Wt-Dystroglycan und nicht-spaltbarem Dystroglycan nur einen gelegentlichen Richtungswechsel der Axone verursachte. Die Daten zeigen, dass Dystroglycan einen entscheidenden Einfluss auf die Proliferation, Differenzierung und Polarität der Neuroepithelzellen ausübt. Dies geschieht vermutlich durch die Vermittlung der Adhäsion des Endfußes von Neuroepithelzellen an die Basalmembran. Die Veränderungen nach der Überexpression der modifizierten Dystroglycankonstrukte liefern möglicherweise eine Erklärung für den ZNS-Phänotyp der sich bei verschiedenen Formen von Muskeldystrophie zeigt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Multiple Sklerose (MS) ist eine Autoimmunkrankheit des zentralen Nervensystems, bei der sich autoreaktive T-Effektorzellen der Kontrolle durch regulatorische T-Zellen (Treg) entziehen. Innerhalb dieser Arbeit wurde gezeigt, dass T-Effektorzellen von MS-Patienten insensitiv gegenüber der Suppression durch Treg sind. Hervorgerufen wird diese Treg-Resistenz durch Interleukin-6 (IL-6). Die Inhibition des IL-6-Signalweges stellt die Treg-vermittelte Suppression der T-Effektorzellen wieder her. Es zeigte sich, dass die Bildung von IL-6 und die Expression des IL-6-Rezeptors in MS-Patienten in einer positiven Rückkopplungsschleife von IL-6 selbst induziert werden.rnZur Analyse humaner Immunantworten in vivo und deren Modulation durch humanspezifische Therapeutika wurden humanisierte Mausmodelle etabliert. Der adoptive Transfer humaner Immunzellen in immundefiziente Mäuse erlaubte die Untersuchung von T-Lymphozyten, die aus dem Blut von MS-Patienten isoliert wurden. Es zeigte sich, dass Treg-resistente T-Effektorzellen aus den MS-Patienten in den Tieren eine letale Graft-versus-Host-Erkrankung auslösten, die nicht durch aktivierte Treg therapiert werden konnte. Erst eine Behandlung mit dem humanspezifischen anti-IL-6-Antikörper Tocilizumab in vivo konnte die Erkrankung der Tiere deutlich abmildern.rnIm zweiten Modell wurden immundefiziente Mäuse mit humanen CD34+ Blutstammzellen immunologisch rekonstituiert. Diese Tiere entwickelten ein nahezu vollständig humanes Immunsystem. Die Immunisierung mit dem murinen Myelin-Oligodenrozyten-Glykoprotein löste in den humanisierten Mäusen eine MS-ähnliche Autoimmunität aus. Die Neuroinflammation wurde durch humane T- und B-Zellen vermittelt, korrelierte mit erhöhter IL-17-Produktion und führte zu einer IL-6-abhängigen Treg-Resistenz der T-Effektorzellen. Somit eignen sich die etablierten Modelle, um zukünftig die Wirksamkeit neuer Therapeutika zur Behandlung der MS präklinisch zu testen.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dendritische Zellen (DC) spielen als professionelle antigenpräsentierende Zellen (APC) eine zentrale Rolle in der Aktivierung und Regulierung antigenspezifischer Immunantworten. Aus diesem Grund wird der therapeutische Einsatz von DC zur Behandlung von Autoimmunerkrankungen und Allergien sowie zur Tumorbekämpfung erforscht. Im ersten Teil der vorliegenden Arbeit untersuchten wir das Potenzial einer biolistischen DNA-Vakzinierung zur Induktion tolerogener DC in vivo. Im Tiermodell der Myelin-Oligodendrozyten-Glykoprotein Peptid 35-55 (MOGp35-55) induzierten experimentellen autoimmunen Enzephalomyelitis (EAE) sollte mittels präventiver biolistischer Kovakzinierung von Plasmid-DNA kodierend für MOG und die immunregulatorischen Zytokine TGFβ oder IL-10 eine protektive Immunität induziert werden. Die MOG-Expression stand dabei entweder unter der Kontrolle des ubiquitär aktiven CMV-Promotors oder des murinen Fascin-Promotors, um eine ektopische MOG-Expression spezifisch in dermalen DC und Langerhanszellen zu erreichen. Dass MOGp35-55-präsentierende DC nach biolistischer DNA-Vakzinierung von der Haut in die drainierenden Lymphknoten migrieren und dort T-Zellen aktivieren, konnte im Vorfeld anhand einer substanziellen Proliferation von MOGp35-55-reaktiven 2D2 T-Zellen nachgewiesen werden. Im präventiven Ansatz der MOGp35-55-induzierten EAE zeigten Mäuse, die mit MOG-kodierenden Plasmiden biolistisch transfiziert wurden, eine leicht reduzierte EAE-Symptomatik. Die Kotransfektion von MOG und TGFβ führte zu einer Verstärkung der EAE-Suppression – unabhängig davon, ob die MOG-Expression unter der Kontrolle des CMV- oder des Fascin-Promotors stand. Interessanterweise resultierte die Koapplikation von MOG- und IL-10-kodierender Plasmid-DNA nur bei DC-fokussierter MOG-Expression zu reduzierter EAE-Symptomatik. Für biolistische DNA-Vakzinierungen stellt somit der Fascin-Promotor eine potente Alternative zu viralen Promotoren dar. Entsprechend der milderen EAE-Symptome beobachteten wir bei behandelten EAE-Mäusen einen geringeren Grad an Demyelinisierung sowie eine reduzierte Infiltration des ZNS mit IFNγ-produzierenden CD4+ Th1- und IL-17-produzierenden CD4+ Th17-Zellen. Desweiteren zeigten Milzzellen ex vivo nach MOGp35-55-Restimulation eine inhibierte Proliferation und eine signifikant reduzierte IFNγ- und IL-17-Zytokinproduktion. Überraschenderweise ging die antigenspezifische Immunsuppression nicht mit der Expansion von Foxp3+ regulatorischen T-Zellen einher. Da die Milzen aber erhöhte Mengen an CD8+IFNγ+ T-Zellen aufweisen, könnte ein zytotoxisch-suppressiver Mechanismus für die Inhibition der Th1- und Th17-Immunantwort verantwortlich sein. Nachfolgende Untersuchungen sind notwendig, um die induzierten immunologischen Mechansimen mittels biolistischer DNA-Vakzinierung aufzuklären. Der zweite Teil der Arbeit befasst sich mit der Generierung von tolerogenen DC in vitro. Dafür wurden murine Knochenmarkszellen unter DC-differenzierenden Bedingungen in Gegenwart des synthetischen Glucocorticoids Dexamethason (DEX) kultiviert. Die DEX-Zugabe führte zur Differenzierung von APC mit geringer CD11c-Expression. DEX-APC waren in vitro weitestgehend gegen LPS stimulierungsresistent und zeigten eine reduzierte Expression von MHC-II und den kostimulatorischen Molekülen CD80, CD86 und CD40. Ihrem tolerogenen Phänotyp entsprechend besaßen DEX-APC ein geringeres syngenes T-Zellstimulierungspotenzial als unbehandelte BM-DC. Anhand der erhöhten Oberflächenexpression von CD11b, GR1 und F4/80 besteht eine phänotypische Ähnlichkeit zu myeloiden Suppressorzellen. Die Fähigkeit von DEX-APC in vivo antigenspezifische Toleranz zu induzieren, wurde durch einen therapeutischen Ansatz im murinen Krankheitsmodell der Kontaktallergie überprüft. Die therapeutische Applikation von DEX-APC führte hierbei im Vergleich zur Applikation von PBS oder unbehandelten BM-DC zu einer signifikant reduzierten Ohrschwellungsreaktion. Zusammenfassend demonstrieren die Ergebnisse dieser Arbeit, dass potente tolerogene DC sowohl in vivo als auch in vitro induziert werden können. Dass diese Zellpopulation effektiv antigenspezifische Immunreaktionen supprimieren kann, macht sie zu einem vielversprechenden Werkzeug in der Behandlung von Autoimmunerkrankungen und Allergien.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Im zentralen Nervensystem (ZNS) myelinisieren Oligodendrozyten neuronale Axone, indem sie ihre Zellfortsätze mehrfach um axonale Segmente wickeln. Die Ausbildung dieser multilamellaren Membranstapel ermöglicht eine saltatorische und damit rasche und energie-effiziente Erregungsleitung (Nave, 2010). Eine Schädigung des Myelins beeinträchtigt die Reizweiterleitung und führt zur Degeneration der Axone, wie es zum Beispiel bei der Multiplen Sklerose der Fall ist. Das Myelin basische Protein (MBP) ist ein Hauptbestandteil des Myelin und ist essentiell für die Kompaktierung der Myelinmembran (Wood et al., 1984). Die MBP mRNA wird in hnRNP A2 enthaltenen RNA Granulen in einem translations-inaktiven Zustand zu den distalen Fortsätzen transportiert. Vermittelt durch axonale Signale wird nach axo-glialem Kontakt die Translation von MBP ermöglicht (White et al., 2008). Der genaue Mechanismus der differentiellen Genregulation des MBP Proteins ist bisher nur unzureichend aufgeklärt. In der vorliegenden Arbeit konnte eine kleine regulatorische RNA (sncRNA) identifiziert werden, welche über die seed Region mit der MBP mRNA interagieren und die Translation regulieren kann. In primären Oligodendrozyten führt die Überexpression der sncRNA-715 zu reduzierten MBP Protein Mengen und die Blockierung der endogenen sncRNA-715 führt zu einer gesteigerten MBP Synthese. Interessanterweise korreliert während der Differenzierung der Oligodendrozyten in vitro und in vivo die Synthese des MBP Proteins invers mit der Expression der sncRNA-715. In Oligodendrozyten beeinflusst eine experimentell erhöhte sncRNA-715 Menge die Zellmorphologie und induziert Apoptose. Weiterhin ist sncRNA-715 in zytoplasmatischen granulären Strukturen lokalisiert und assoziiert mit MBP mRNA in hnRNP A2 Transport- Granula. Diese Ergebnisse lassen vermuten, dass sncRNA-715 ein Bestandteil der hnRNP A2 Granula sein könnte und dort spezifisch die Translation der MBP mRNA während des Lokalisationsprozesses inhibiert. In chronischen MS Läsionen sind Olig2+-Zellen zu finden. Obwohl die MBP mRNA in diesen Läsionen nachzuweisen ist, kann kein Protein synthetisiert werden. In dieser Arbeit konnte gezeigt werden, dass in diesen Läsionen die Expression der sncRNA-715 erhöht ist. SncRNA-715 könnte die Translation von MBP verhindern und folglich als Inhibitor der Remyelinisierung während des Krankheitsverlaufs fungieren. Schwann-Zellen sind die myelinisierenden Zellen im peripheren Nervensystem (PNS). Im Zuge der Myelinisierung wird die MBP mRNA in diesen Gliazellen ebenfalls in die distalen Fortsätze transportiert und dort lokal translatiert und in die Myelinmembran eingebaut (Trapp et al., 1987). Im Gegensatz zum ZNS ist im PNS nur wenig über den Transportmechanismus der mRNA bekannt (Masaki, 2012). Es ist es sehr wahrscheinlich, dass in Schwann-Zellen und Oligodendrozyten die Lokalisation und die translationale Hemmung der MBP mRNA ähnlichen Mechanismen unterliegen. In der vorliegenden Arbeit konnte gezeigt werden, dass hnRNP A2 und sncRNA-715 in Schwann-Zellen exprimiert werden und in zytoplasmatischen Granula-ähnlichen Strukturen lokalisiert sind. Während der Differenzierung dieser Gliazellen in vivo und in vitro korreliert die Expression der sncRNA-715 invers mit der Synthese des MBP Proteins. HnRNP A2 und sncRNA-715 scheinen in Schwann-Zellen assoziiert zu sein und könnten wie in Oligodendrozyten den Transport der MBP mRNA vermitteln.