2 resultados para Multidisciplinary training in behavior therapy skills
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In my dissertation I investigated the influence of behavioral variation between and within ant colonies on group performance. In particular, I analyzed how evolution shapes behavior in response to ecological conditions, and whether within-group diversity improves productivity as suggested by theory. Our field and laboratory experiments showed that behavioral diverse groups are more productive. Different aggression levels within colonies were beneficial under competitive field situations, whereas diversity in brood care and exploratory behavior were favored in non-competitive laboratory situations. We then examined whether population density and social parasite presence shape aggression through phenotypic plasticity and/or natural selection. The importance of selection was indicated by the absence of density or parasite effects on aggression in a field manipulation. Indeed, more aggressive colonies fared better under high density and during parasite attack. When analyzing the proximate causes of individual behavioral variation, ovarian development was shown to be linked to division of labor and aggressiveness. Finally, our studies show that differences in the collective behavior can be linked to immune defense and productivity. My dissertation demonstrates that behavioral variation should be studied on multiple scales and when possible combined with physiological analyses to better understand the evolution of animal personalities in social groups.rn
Resumo:
The identification of molecular processes involved in cancer development and prognosis opened avenues for targeted therapies, which made treatment more tumor-specific and less toxic than conventional therapies. One important example is the epidermal growth factor receptor (EGFR) and EGFR-specific inhibitors (i.e. erlotinib). However, challenges such as drug resistance still remain in targeted therapies. Therefore, novel candidate compounds and new strategies are needed for improvement of therapy efficacy. Shikonin and its derivatives are cytotoxic constituents in traditional Chinese herbal medicine Zicao (Lithospermum erythrorhizin). In this study, we investigated the molecular mechanisms underlying the anti-cancer effects of shikonin and its derivatives in glioblastoma cells and leukemia cells. Most of shikonin derivatives showed strong cytotoxicity towards erlotinib-resistant glioblastoma cells, especially U87MG.ΔEGFR cells which overexpressed a deletion-activated EGFR (ΔEGFR). Moreover, shikonin and some derivatives worked synergistically with erlotinib in killing EGFR-overexpressing cells. Combination treatment with shikonin and erlotinib overcame the drug resistance of these cells to erlotinib. Western blotting analysis revealed that shikonin inhibited ΔEGFR phosphorylation and led to corresponding decreases in phosphorylation of EGFR downstream molecules. By means of Loewe additivity and Bliss independence drug interaction models, we found erlotinb and shikonin or its derivatives corporately suppressed ΔEGFR phosphorylation. We believed this to be a main mechanism responsible for their synergism in U87MG.ΔEGFR cells. In leukemia cells, which did not express EGFR, shikonin and its derivatives exhibited even greater cytotoxicity, suggesting the existence of other mechanisms. Microarray-based gene expression analysis uncovered the transcription factor c-MYC as the commonly deregulated molecule by shikonin and its derivatives. As validated by Western blotting analysis, DNA-binding assays and molecular docking, shikonin and its derivatives bound and inhibited c-MYC. Furthermore, the deregulation of ERK, JNK MAPK and AKT activity was closely associated with the reduction of c-MYC, indicating the involvement of these signaling molecules in shikonin-triggered c-MYC inactivation. In conclusion, the inhibition of EGFR signaling, synergism with erlotinib and targeting of c-MYC illustrate the multi-targeted feature of natural naphthoquinones such as shikonin and derivatives. This may open attractive possibilities for their use in a molecular targeted cancer therapy.