7 resultados para Molecular Sequence Data
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Über cDNA-Banken und RT-PCR wurden erstmals 15 Intermediärfilament-Proteine (IF-Proteine) des Flussneunauges Lampetra fluviatilis (Agnatha, kieferlose Wirbeltiere) kloniert und sequenziert: drei Typ I-Keratine, vier Typ II-Keratine, fünf keratinartige IF-Proteine (drei Kγ, zwei Kα), die Typ III-Proteine Vimentin und Desmin sowie ein Typ IV-Neurofilament-Protein (NF).Die IF-Proteine wurden aus verschiedenen Organen isoliert und durch zweidimensionale Polyacrylamid-Gelelektrophorese (2D-PAGE) aufgetrennt. Biochemische sowie massenspektrometrische Analysen anhand der 2D-PAGE ermöglichten in Kombination mit den Sequenzdaten die Identifizierung von Vimentin, Desmin sowie aller sequenzierten Keratine bis auf zwei der fünf Kα/Kγ-Proteine. Die meisten Keratine ließen sich darüber hinaus in die Kategorien âEâ (von âepidermalâ) und âSâ (von âsimple epithelialâ) einteilen.Von den sequenzierten Keratinen ist das IIS-Keratin K8 wahrscheinlich ortholog zu den bekannten K8-Sequenzen höherer Vertebraten. Die Bezeichnung K18 für das einzige IS-Keratin des Neunauges in Anlehnung an das IS-Keratin K18 des Menschen basiert auf der stets beobachteten Koexpression mit K8 in einfachen Epithelien.Die Sequenz des Neunaugen-Vimentins zeigt große Übereinstimmungen mit den bekannten Desminsequenzen der Vertebraten. Die keratinartigen Proteine Kα und Kγ sind bis jetzt nur von Agnathen (Neunaugen und Schleimaale) bekannt.In molekularen Stammbäumen können K8, K18, Vimentin, Desmin und das NF_L des Neunauges gut als Außengruppe definiert werden.
Resumo:
Das Wolf-Hirschhorn-Syndrom (WHS) ist ein komplexes und variables Fehlbildungs- Retardierungssyndrom, das durch Deletion in der distalen Chromosomenregion 4p16.3 hervorgerufen wird und dessen Ätiologie und Pathogenese bisher weitgehend unverstanden sind. Die Zielsetzung in der vorliegenden Arbeit bestand in der Identifizierung und vorläufigen Charakterisierung neuer Gene, die an der Entstehung des Syndroms beteiligt sein könnten. Die Wolf-Hirschhorn-Syndrom-kritische Region (WHSCR) konnte zu Beginn der vorliegenden Arbeit auf einen ca. 2 Mb großen Bereich zwischen den Markern D4S43 und D4S142 eingegrenzt werden. Für die Identifizierung neuer Gene wurden zunächst drei größere genomische Cosmid-/PAC-Contigs (I-III) im Bereich der Marker D4S114 bis D4S142 erstellt und mittels Exonamplifikation auf transkribierte Bereiche (Exons) untersucht. Es konnten insgesamt 67 putative 'Exons' isoliert werden, von denen einige bereits bekannten Genen (ZNF141, PDEB, MYL5, GAK, DAGK4 und FGFR3) entsprechen. Zwei dieser Gene konnten im Rahmen dieser Arbeit erstmals (DAGK4) bzw. genauer (GAK) in die distale Region 4p16.3 kartiert werden. Die restlichen Exons können aufgrund von Homologievergleichen und/oder EST-cDNA-Homologien vermutlich neuen Genen oder auch Pseudogenen (z. B. YWEE1hu) zugeordnet werden. Durch die im Verlaufe der vorliegenden Arbeit publizierte weitere Eingrenzung der WHSCR auf einen 165 Kb-großen Bereich proximal des FGFR3-Gens konzentrierten sich weitere Untersuchungen auf die detaillierte Analyse der WHSCR zwischen dem Marker D4S43 und FGFR3. Mit Hilfe von Exonamplifikation bzw. computergestützter Auswertung vorliegender Sequenzdaten aus diesem Bereich ('GRAIL', 'GENSCAN' und Homologievergleiche in den EST-Datenbanken des NCBI) konnten mehrere neue Gene identifiziert werden. In distaler-proximaler Reihenfolge handelt es sich dabei um die Gene LETM1, 51, 43, 45, 57 und POL4P. LETM1 kodiert für ein putatives Transmembran-Protein mit einem Leucin-Zipper- und zwei EF-Hand-Motiven und könnte aufgrund seiner möglichen Beteiligung an der Ca2+-Homeostase und/oder der Signal-transduktion zu Merkmalen des WHS (Krampfanfällen, mentale Retardierung und muskuläre Hypotonie) beitragen. Das Gen 51 entspricht einem in etwa zeitgleich durch Stec et al. (1998) und Chesi et al. (1998) als WHSC1 bzw. MMSET bezeichnetem Gen und wurde daher nicht weiter charakterisiert. Es wird genauso wie das Gen 43, das zeitgleich von Wright et al. (1999b) als WHSC2 beschrieben werden konnte und eine mögliche Rolle bei der Transkriptionselongation spielt, ubiquitär exprimiert. Das in der vorliegenden Arbeit identifizierte Gen 45 zeigt demgegenüber ein ausgesprochen spezifisches Expressionsmuster (in Nervenzellen des Gehirns sowie in Spermatiden). Dies stellt zusammen mit der strukturellen Ähnlichkeit des putativen Genprodukts zu Signalmolekülen einen interessanten Zusammenhang zu Merkmalen des WHS (beispielsweise Kryptorchismus, Uterusfehlbildungen oder auch neurologische Defekte) her. Demgegenüber handelt es sich bei dem Gen 57 möglicherweise um ein trunkiertes Pseudogen des eRFS-Gens auf Chromosom 6q24 (Wallrapp et al., 1998). Das POL4P-Gen schließlich stellt allein aufgrund seiner genomischen Lokalisation sowie seiner möglichen Funktion (als DNA-Polymerase-ähnliches Gen) kein gutes Kandidatengen für spezifische Merkmale des Syndroms dar und wurde daher nicht im Detail charakterisiert. Um die Beteiligung der Gene an der Ätiologie und Pathogenese des Syndroms zu verstehen, ist die Entwicklung eines Mausmodells (über das Einfügen gezielter Deletionen in das Mausgenom) geplant. Um dies zu ermöglichen, wurde in der vorliegenden Arbeit die Charakterisierung der orthologen Region bei der Maus vorgenommen. Zunächst wurden die orthologen Gene der Maus (Letm1, Whsc1, Gen 43 (Whsc2h), Gen 45 und Pol4p) identifiziert. Durch die Erstellung sowie die genaue Kartierung eines murinen genomischen P1/PAC-Klon-Contigs konnte gezeigt werden, daß die murinen Gene Fgfr3, Letm1, Whsc1, Gen 43 (Whsc2h), Gen 45 und Pol4p sowie einige weitere der überprüften EST-cDNA-Klone der Maus in einem durchgehenden Syntänieblock zwischen Mensch (POL4P bis FGFR3) und Maus (Mmu 5.20) enthalten sind, der in seiner genomischen Ausdehnung in etwa den Verhältnissen beim Menschen (zwischen POL4P und FGFR3) entspricht.
Resumo:
Bei dem 2010 von unserer Arbeitsgruppe entdeckten Mega-Hämocyanin handelt es sich um einen stark abgewandelten Typ des respiratorischen Proteins Hämocyanin, bestehend aus zwei flankierenden regulären Dekameren und einem zentralen Mega-Dekamer. Diese sind aus zwei immunologisch verschiedenen Untereinheiten mit ~400 bzw. ~550 kDa aufgebaut, die in unserer Arbeitsgruppe bereits proteinbiochemisch charakterisiert wurden. Im Zuge dieser Untersuchungen konnte zudem eine 3D-Rekonstruktion des Oligomers (13,5 MDa) mit einer Auflösung von 13Å erstellt werden. Das Ziel der vorliegenden Arbeit war die Aufklärung der Primärstruktur beider Polypeptide bei der Schnecke Melanoides tuberculata (MtH). Es gelang, die cDNAs der beiden Untereinheiten vollständig zu sequenzieren. Die zu typischen Dekameren assemblierende MtH400-Untereinheit umfasst 3445 Aminosäuren und besitzt eine theoretische Molekularmasse von 390 kDa. Nach dem Signalpeptid von 23 Aminosäuren Länge folgen die für Gastropoden-Hämocyanine typischen funktionellen Einheiten FU-a bis FU-h. Insgesamt verfügt die MtH400-Untereinheit über sechs potentielle N-Glykosylierungsstellen. Die MtH550-Untereinheit, welche mit 10 Kopien das Mega-Dekamer bildet, umfasst 4999 Aminosäuren und besitzt eine theoretische Molekularmasse von 567 kDa. Damit handelt es sich bei dieser Untereinheit um die zweitgrößte jemals bei einem Protein detektierte Polypeptidkette. Die MtH550-Untereinheit besteht aus einem Signalpeptid von 20 Aminosäuren Länge und den typischen Wand-FUs (FU-a bis FU-f). Daran anschließend folgen sechs weitere Varianten der FU-f (FU-f1 bis FU-f6). Die MtH550-Untereinheit verfügt über insgesamt zwölf potentielle N-Glykosylierungsstellen. Anhand der ermittelten Primärstrukturdaten wird klar, dass der auffällig vergrößerte Kragenbereich des Mega-Dekamers aus je 10 Kopien der FU-f1 bis FU-f6 besteht. Die ermittelten Sequenzdaten der beiden MtH-Untereinheiten weisen im Vergleich zu anderen Hämocyanin Sequenzen einige sehr charakteristische Indels sowie unübliche N-Glykosylierungsstellen auf. Es war zudem möglich, anhand einer molekularen Uhr den Entstehungszeitpunkt des Mega-Hämocyanins zu datieren (145 ± 35 MYA). Sowohl die Topologie als auch die berechneten Trennungszeitpunkte des an allen Verzweigungen gut unterstützten Stammbaums stimmen mit den bisher publizierten und auf Hämocyanindaten basierenden molekularen Uhren überein.
Resumo:
I investigated the systematics, phylogeny and biogeographical history of Juncaginaceae, a small family of the early-diverging monocot order Alismatales which comprises about 30 species of annual and perennial herbs. A wide range of methods from classical taxonomy to molecular systematic and biogeographic approaches was used. rnrnIn Chapter 1, a phylogenetic analysis of the family and members of Alismatales was conducted to clarify the circumscription of Juncaginaceae and intrafamilial relationships. For the first time, all accepted genera and those associated with the family in the past were analysed together. Phylogenetic analysis of three molecular markers (rbcL, matK, and atpA) showed that Juncaginaceae are not monophyletic. As a consequence the family is re-circumscribed to exclude Maundia which is pro-posed to belong to a separate family Maundiaceae, reducing Juncaginaceae to include Tetroncium, Cycnogeton and Triglochin. Tetroncium is weakly supported as sister to the rest of the family. The reinstated Cycnogeton (formerly included in Triglochin) is highly supported as sister to Triglochin s.str. Lilaea is nested within Triglochin s. str. and highly supported as sister to the T. bulbosa complex. The results of the molecular analysis are discussed in combination with morphological characters, a key to the genera of the family is given, and several new combinations are made.rnrnIn Chapter 2, phylogenetic relationships in Triglochin were investigated. A species-level phylogeny was constructed based on molecular data obtained from nuclear (ITS, internal transcribed spacer) and chloroplast sequence data (psbA-trnH, matK). Based on the phylogeny of the group, divergence times were estimated and ancestral distribution areas reconstructed. The monophyly of Triglochin is confirmed and relationships between the major lineages of the genus were resolved. A clade comprising the Mediterranean/African T. bulbosa complex and the American T. scilloides (= Lilaea s.) is sister to the rest of the genus which contains two main clades. In the first, the widespread T. striata is sister to a clade comprising annual Triglochin species from Australia. The second clade comprises T. palustris as sister to the T. maritima complex, of which the latter is further divided into a Eurasian and an American subclade. Diversification in Triglochin began in the Miocene or Oligocene, and most disjunctions in Triglochin were dated to the Miocene. Taxonomic diversity in some clades is strongly linked to habitat shifts and can not be observed in old but ecologically invariable lineages such as the non-monophyletic T. maritima.rnrnChapter 3 is a collaborative revision of the Triglochin bulbosa complex, a monophyletic group from the Mediterranean region and Africa. One new species, Triglochin buchenaui, and two new subspecies, T. bulbosa subsp. calcicola and subsp. quarcicola, from South Africa were described. Furthermore, two taxa were elevated to species rank and two reinstated. Altogether, seven species and four subspecies are recognised. An identification key, detailed descriptions and accounts of the ecology and distribution of the taxa are provided. An IUCN conservation status is proposed for each taxon.rnrnChapter 4 deals with the monotypic Tetroncium from southern South America. Tetroncium magellanicum is the only dioecious species in the family. The taxonomic history of the species is described, type material is traced, and a lectotype for the name is designated. Based on an extensive study of herbarium specimens and literature, a detailed description of the species and notes on its ecology and conservation status are provided. A detailed map showing the known distribution area of T. magellanicum is presented. rnrnIn Chapter 5, the flower structure of the rare Australian endemic Maundia triglochinoides (Maundiaceae, see Chapter 1) was studied in a collaborative project. As the morphology of Maundia is poorly known and some characters were described differently in the literature, inflorescences, flowers and fruits were studied using serial mictrotome sections and scanning electron microscopy. The phylogenetic placement, affinities to other taxa, and the evolution of certain characters are discussed. As Maundia exhibits a mosaic of characters of other families of tepaloid core Alismatales, its segregation as a separate family seems plausible.
Resumo:
Hämocyanine sind große, multimere Sauerstofftransport- proteine, die frei gelöst in der Hämolymphe von Arthropoden und Mollusken vorkommen.Zur Charakterisierung verschiedener Arthropoden-hämocyanine wurden deren molare Massen bestimmt. Die mit einer Vielwinkel-Laser-Lichtstreuapparatur ermittelten Molekulargewichte zeigten eine grosse Schwankungsbreite. Dies konnte auf Ungenauigkeiten der zur Berechnung der Molekulargewichte verwendeten spezifischen Extinktions- koeffizienten und Brechungsindex-Inkremente zurückgeführt werden.Mit der Methode der Massenspektrometrie (MALDI-TOF) bestimmte Molekulargewichte einzelner Untereinheiten des Hämocyanins der Vogelspinne Eurypelma californicum zeigten eine sehr gute Übereinstimmung mit aus der Sequenz errechneten Werten.Für das 24-mere Spinnenhämocyanin von Eurypelma californicum wurde die Stabilität gegenüber GdnHCl und der Temperatur auf den verschiedenen strukturellen Ebenen des Proteins untersucht.Viele Stabilitätsuntersuchungen werden an kleinen Proteinen durchgeführt, deren Entfaltung kooperativerfolgt. Bei größeren Proteinen mit unterschiedlichen strukturellen Bereichen (Domänen) ist der Entfaltungs-prozess weitaus komplexer. Ziel war es, durch die Denaturierung des Spinnen-Hämocyanins Erkenntnisse über die Stabilität und Entfaltung der verschiedenen strukturellen Ebenen eines so großen Proteinkomplexes zu gewinnen.Ein wichtiges Charakteristikum für die Interpretation der Entfaltungsexperimente ist die starke Löschung der Tryptophanfluoreszenz im oxygenierten Spinnen-Hämocyanin. Die Löschung kann vollständig durch Förster-Transfer erklärt werden kann. Sie bleibt auf die einzelnen Untereinheiten beschränkt und stellt somit ein reines O2-Beladungssignal dar.Unter Einwirkung von GdnHCl dissoziiert das native, 24-mere Spinnen-Hämocyanin ohne die Entstehung langlebiger Inter- mediate. Die Untereinheiten werden durch das Oligomer stabilisiert. Die Entfaltung eines Monomers, der Unter- einheit e, folgt einer Hierarchie der verschiedenen strukturellen Ebenen des Moleküls. Die Entfaltung beginnt zunächst von außen mit der Auflockerung der Tertiärstruktur. Der Kern von Domäne II mit dem aktiven Zentrum weist hingegen eine besondere Stabilität auf.Die ausgeprägte Hitzestabilität des Eurypelma-Hämocyanins hängt vom Oligomerisierungsgrad, dem verwendeten Puffer und dessen Ausgangs-pH-Wert ab und spiegelt offensichtlich die extremen Lebensbedingungen im Habitat wider.
Resumo:
ABSTRACTDie vorliegende Arbeit befasste sich mit der Reinigung,heterologen Expression, Charakterisierung, molekularenAnalyse, Mutation und Kristallisation des EnzymsVinorin-Synthase. Das Enzym spielt eine wichtige Rolle inder Ajmalin-Biosynthese, da es in einerAcetyl-CoA-abhängigen Reaktion die Umwandlung desSarpagan-Alkaloids 16-epi-Vellosimin zu Vinorin unterBildung des Ajmalan-Grundgerüstes katalysiert. Nach der Reinigung der Vinorin-Synthase ausHybrid-Zellkulturen von Rauvolfia serpentina/Rhazya strictamit den fünf chromatographischen TrennmethodenAnionenaustauschchromatographie an SOURCE 30Q, HydrophobeInteraktionen Chromatographie an SOURCE 15PHE,Chromatographie an MacroPrep Ceramic Hydroxyapatit,Anionenaustauschchromatographie an Mono Q undGrößenausschlußchromatographie an Superdex 75 konnte dieVinorin-Synthase aus 2 kg Zellkulturgewebe 991fachangereichert werden.Das nach der Reinigung angefertigte SDS-Gel ermöglichte eineklare Zuordnung der Protein-Bande als Vinorin-Synthase.Der Verdau der Enzymbande mit der Endoproteinase LysC unddie darauffolgende Sequenzierung der Spaltpeptide führte zuvier Peptidsequenzen. Der Datenbankvergleich (SwissProt)zeigte keinerlei Homologien zu Sequenzen bekannterPflanzenenzyme. Mit degenerierten Primern, abgeleitet voneinem der erhaltenen Peptidfragmente und einer konserviertenRegion bekannter Acetyltransferasen gelang es, ein erstescDNA-Fragment der Vinorin-Synthase zu amplifizieren. Mit derMethode der RACE-PCR wurde die Nukleoidsequenzvervollständigt, was zu einem cDNA-Vollängenklon mit einerGröße von 1263 bp führte, der für ein Protein mit 421Aminosäuren (46 kDa) codiert.Das Vinorin-Synthase-Gen wurde in den pQE2-Expressionsvektorligiert, der für einen N-terminalen 6-fachen His-tagcodiert. Anschließend wurde sie erstmals erfolgreich in E.coli im mg-Maßstab exprimiert und bis zur Homogenitätgereinigt. Durch die erfolgreiche Überexpression konnte dieVinorin-Synthase eingehend charakterisiert werden. DerKM-Wert für das Substrat Gardneral wurde mit 20 µM, bzw.41.2 µM bestimmt und Vmax betrug 1 pkat, bzw. 1.71 pkat.Nach erfolgreicher Abspaltung des His-tags wurden diekinetischen Parameter erneut bestimmt (KM- Wert 7.5 µM, bzw.27.52 µM, Vmax 0.7 pkat, bzw. 1.21 pkat). Das Co-Substratzeigt einen KM- Wert von 60.5 µM (Vmax 0.6 pkat). DieVinorin-Synthase besitzt ein Temperatur-Optimum von 35 °Cund ein pH-Optimum bei 7.8.Homologievergleiche mit anderen Enzymen zeigten, dass dieVinorin-Synthase zu einer noch kleinen Familie von bisher 10Acetyltransferasen gehört. Alle Enzyme der Familie haben einHxxxD und ein DFGWG-Motiv zu 100 % konserviert. Basierendauf diesen Homologievergleichen und Inhibitorstudien wurden11 in dieser Proteinfamilie konservierte Aminosäuren gegenAlanin ausgetauscht, um so die Aminosäuren einer in derLiteratur postulierten katalytischen Triade(Ser/Cys-His-Asp) zu identifizieren.Die Mutation aller vorhandenen konservierten Serine undCysteine resultierte in keiner Mutante, die zumvollständigen Aktivitätsverlust des Enzyms führte. Nur dieMutationen H160A und D164A resultierten in einemvollständigen Aktivitätsverlust des Enzyms. Dieses Ergebniswiderlegt die Theorie einer katalytischen Triade und zeigte,dass die Aminosäuren H160A und D164A exklusiv an derkatalytischen Reaktion beteiligt sind.Zur Überprüfung dieser Ergebnisse und zur vollständigenAufklärung des Reaktionsmechanismus wurde dieVinorin-Synthase kristallisiert. Die bis jetzt erhaltenenKristalle (Kristallgröße in µm x: 150, y: 200, z: 200)gehören der Raumgruppe P212121 (orthorhombisch primitiv) anund beugen bis 3.3 Å. Da es bis jetzt keine Kristallstruktureines zur Vinorin-Synthase homologen Proteins gibt, konntedie Struktur noch nicht vollständig aufgeklärt werden. ZurLösung des Phasenproblems wird mit der Methode der multiplenanomalen Dispersion (MAD) jetzt versucht, die ersteKristallstruktur in dieser Enzymfamilie aufzuklären.
Resumo:
Erkrankungen des Skelettapparats wie beispielsweise die Osteoporose oder Arthrose gehören neben den Herz-Kreislauferkrankungen und Tumoren zu den Häufigsten Erkrankungen des Menschen. Ein besseres Verständnis der Bildung und des Erhalts von Knochen- oder Knorpelgewebe ist deshalb von besonderer Bedeutung. Viele bisherige Ansätze zur Identifizierung hierfür relevanter Gene, deren Produkte und Interaktionen beruhen auf der Untersuchung pathologischer Situationen. Daher ist die Funktion vieler Gene nur im Zusammenhang mit Krankheiten beschrieben. Untersuchungen, die die Genaktivität bei der Normalentwicklung von knochen- und knorpelbildenden Geweben zum Ziel haben, sind dagegen weit weniger oft durchgeführt worden. rnEines der entwicklungsphysiologisch interessantesten Gewebe ist die Epiphysenfuge der Röhrenknochen. In dieser sogenannten Wachstumsfuge ist insbesondere beim fötalen Gewebe eine sehr hohe Aktivität derjenigen Gene zu erwarten, die an der Knochen- und Knorpelbildung beteiligt sind. In der vorliegenden Arbeit wurde daher aus der Epiphysenfuge von Kälberknochen RNA isoliert und eine cDNA-Bibliothek konstruiert. Von dieser wurden ca. 4000 Klone im Rahmen eines klassischen EST-Projekts sequenziert. Durch die Analyse konnte ein ungefähr 900 Gene umfassendes Expressionsprofil erstellt werden und viele Transkripte für Komponenten der regulatorischen und strukturbildenden Bestandteile der Knochen- und Knorpelentwicklung identifiziert werden. Neben den typischen Genen für Komponenten der Knochenentwicklung sind auch deutlich Bestandteile für embryonale Entwicklungsprozesse vertreten. Zu ersten gehören in erster Linie die Kollagene, allen voran Kollagen II alpha 1, das mit Abstand höchst exprimierte Gen in der fötalen Wachstumsfuge. Nach den ribosomalen Proteinen stellen die Kollagene mit ca. 10 % aller auswertbaren Sequenzen die zweitgrößte Gengruppe im erstellten Expressionsprofil dar. Proteoglykane und andere niedrig exprimierte regulatorische Elemente, wie Transkriptionsfaktoren, konnten im EST-Projekt aufgrund der geringen Abdeckung nur in sehr geringer Kopienzahl gefunden werden. Allerdings förderte die EST-Analyse mehrere interessante, bisher nicht bekannte Transkripte zutage, die detaillierter untersucht wurden. Dazu gehören Transkripte die, die dem LOC618319 zugeordnet werden konnten. Neben den bisher beschriebenen drei Exonbereichen konnte ein weiteres Exon im 3‘-UTR identifiziert werden. Im abgeleiteten Protein, das mindestens 121 AS lang ist, wurden ein Signalpeptid und eine Transmembrandomäne nachgewiesen. In Verbindung mit einer möglichen Glykosylierung ist das Genprodukt in die Gruppe der Proteoglykane einzuordnen. Leicht abweichend von den typischen Strukturen knochen- und knorpelspezifischer Proteoglykane ist eine mögliche Funktion dieses Genprodukts bei der Interaktion mit Integrinen und der Zell-Zellinteraktion, aber auch bei der Signaltransduktion denkbar. rnDie EST-Sequenzierungen von ca. 4000 cDNA-Klonen können aber in der Regel nur einen Bruchteil der möglichen Transkripte des untersuchten Gewebes abdecken. Mit den neuen Sequenziertechnologien des „Next Generation Sequencing“ bestehen völlig neue Möglichkeiten, komplette Transkriptome mit sehr hoher Abdeckung zu sequenzieren und zu analysieren. Zur Unterstützung der EST-Daten und zur deutlichen Verbreiterung der Datenbasis wurde das Transkriptom der bovinen fötalen Wachstumsfuge sowohl mit Hilfe der Roche-454/FLX- als auch der Illumina-Solexa-Technologie sequenziert. Bei der Auswertung der ca. 40000 454- und 75 Millionen Illumina-Sequenzen wurden Verfahren zur allgemeinen Handhabung, der Qualitätskontrolle, dem „Clustern“, der Annotation und quantitativen Auswertung von großen Mengen an Sequenzdaten etabliert. Beim Vergleich der Hochdurchsatz Blast-Analysen im klassischen „Read-Count“-Ansatz mit dem erstellten EST-Expressionsprofil konnten gute Überstimmungen gezeigt werden. Abweichungen zwischen den einzelnen Methoden konnten nicht in allen Fällen methodisch erklärt werden. In einigen Fällen sind Korrelationen zwischen Transkriptlänge und „Read“-Verteilung zu erkennen. Obwohl schon simple Methoden wie die Normierung auf RPKM („reads per kilo base transkript per million mappable reads“) eine Verbesserung der Interpretation ermöglichen, konnten messtechnisch durch die Art der Sequenzierung bedingte systematische Fehler nicht immer ausgeräumt werden. Besonders wichtig ist daher die geeignete Normalisierung der Daten beim Vergleich verschieden generierter Datensätze. rnDie hier diskutierten Ergebnisse aus den verschiedenen Analysen zeigen die neuen Sequenziertechnologien als gute Ergänzung und potentiellen Ersatz für etablierte Methoden zur Genexpressionsanalyse.rn