3 resultados para Model of dense and compact territorial occupation

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canavan disease (CD) is a rare leukodystrophy caused by loss-of-function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme. It is characterised by the accumulation of the ASPA substrate N-acetylaspartate (NAA) in brain, blood and urine, leading to a spongiform vacuolisation of the brain, severe motoric and cognitive impairments and premature death. To date, no therapy is available due to the lack of a gene-transfer system allowing transgene expression in oligodendrocytes (OLs) and the restoration of the missing enzyme. Hence, the aim of this study was to establish a novel gene-transfer system and its preclinical evaluation in a CD animal model.rnIn the first part of this thesis, a novel ASPA mouse mutant was generated. A βgeo cassette (including the genes encoding β-galactosidase and neomycin) flanked by frt sites was inserted into intron 1 of the intact aspa gene. Additionally, exon 2 was flanked by loxP sites for optional conditional deletion of the targeted locus. The resulting ASPA-deficient aspalacZ/lacZ-mouse was found to be an accurate model of CD and an important tool to identify novel aspects of its complex pathology. Homozygous mutants showed a CD-like histopathology, neurological impairment, behavioural deficits as well as a reduced body weight. Additionally, MRI data revealed changes in brain metabolite composition. rnRecombinant adeno-associated viral (rAAV) vectors have become a versatile tool for gene transfer to the central nervous system because they are efficient, non-toxic and replication-deficient. Based on the natural neurotropism of AAV vectors, AAV-based gene delivery has entered the clinics for the treatment of neurodegenerative diseases. However, the lack of AAV vectors with oligodendroglial tropism has precluded gene therapy for leukodystrophies. In the second part of this work, it was shown that the transduction profile of established AAV serotypes can be targeted towards OLs in a transcriptional approach, using the oligodendrocyte-specific myelin basic protein (MBP) promoter to drive transgene expression in OLs.rnIn the last part of this work, the therapeutic efficacy of AAV-mediated aspa gene transfer to OLs of juvenile aspalacZ/lacZ mice was evaluated. AAV-aspa injections into multiple sites of the brain parenchyma resulted in transduction of OLs in the grey and white matter throughout the brain. Histological abnormalities in the brain of ASPA-deficient mice were ameliorated and accompanied by a reduction of NAA levels. Furthermore, the treatment resulted in normalisation of body weight, motor function and nest-building behaviour. These data provide a proof-of-concept for a successful gene therapy of Canavan disease. This might pave the way towards translation into clinical application and serve as the basis for the genetic treatment of other leukodystrophies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate a chain consisting of two coupled worm-like chains withconstant distance between the strands. The effects due todouble-strandedness of the chain are studied. In a previous analyticalstudy of this system an intrinsic twist-stretch coupling and atendency of kinking is predicted. Even though a local twist structureis observed the predicted features are not recovered. A new model for DNA at the base-pair level is presented. Thebase-pairs are treated as flat rigid ellipsoids and thesugar-phosphate backbones are represented as stiff harmonic springs.The base-pair stacking interaction is modeled by a variant of theGay-Berne potential. It is shown by systematic coarse-graininghow the elastic constants of a worm-like chain are related to thelocal fluctuations of the base-pair step parameters. Even though a lotof microscopic details of the base-pair geometry is neglected themodel can be optimized to obtain a B-DNA conformation as ground stateand reasonable elastic properties. Moreover the model allows tosimulate much larger length scales than it is possible with atomisticsimulations due to the simplification of the force-field and inparticular due to the possibility of non-local Monte-Carlo moves. Asa first application the behavior under stretching is investigated. Inagreement with micromanipulation experiments on single DNA moleculesone observes a force-plateau in the force-extension curvescorresponding to an overstretching transition from B-DNA to aso-called S-DNA state. The model suggests a structure for S-DNA withhighly inclined base-pairs in order to enable at least partialbase-pair stacking. Finally a simple model for chromatin is introduced to study itsstructural and elastic properties. The underlying geometry of themodeled fiber is based on a crossed-linker model. The chromatosomesare treated as disk-like objects. Excluded volume and short rangenucleosomal interaction are taken into account by a variant of theGay-Berne potential. It is found that the bending rigidity and thestretching modulus of the fiber increase with more compact fibers. Fora reasonable parameterization of the fiber for physiologicalconditions and sufficiently high attraction between the nucleosomes aforce-extension curve is found similar to stretching experiments onsingle chromatin fibers. For very small stretching forces a kinkedfiber forming a loop is observed. If larger forces are applied theloop formation is stretched out and a decondensation of the fibertakes place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H2O and HNO3 redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been improved, e.g. a method for the assimilation of meteorological analysis data in the general circulation model, the liquid PSC particle composition scheme, and the calculation of heterogeneous reaction rate coefficients. The interplay of these model components is demonstrated in a simulation of stratospheric chemistry with the coupled general circulation model. Tests against recent satellite data show that the model successfully reproduces the Antarctic ozone hole.