2 resultados para Milling (Metal-work)
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wird ein prochirales, aus natürlichen Resourcen gewonnenes Azulen, das Guajazulen genutzt, um neuartige chirale Cyclopentadienyl-Systeme aufzubauen. Mit Alkalimetallhypersilaniden als starke und sperrige Nukleophile gelingt es hypersilylsubstituierte Gujazulenide zu synthetisieren. Diese wurden mittels Elementaranalyse, NMR-Spektroskopie und Röntgendiffraktometrie charakterisiert. Durch nachfolgende Metathesen mit Übergangsmetallhalogeniden konnten in vielen Fällen die entsprechenden Metallocene erhalten werden. Die Experimente enthüllen eine ausgeprägte Regioselektivität der Addition des sperrigen Hypersilyanions an das Guajazulen, die durch das eingesetzte Lösungsmittel graduell verändert werden kann. In nicht-koordinierenden Lösungsmitteln findet man ausschließlich eine Addition an der 6-Position, die 6-Hypersilyl-2,6-dihydroguajazulenide (6-Hyp-Hgual) (M=Li 1, K 2, Cs 4) in ausgezeichneten Ausbeuten liefert. In polaren Solventien erhält man hingegen Mischungen der 6- und 8-Regioisomeren: 2 bzw. (8-Hyp-Hgual) (3). 2 bleibt aber hierbei das Hauptprodukt. Röntgenbeugungsexperimente zeigen, dass 1 im Kristall als dimerer Sandwich-Komplex, meso-[Li2(6-Hyp-Hgual)2], und die THF-Solvate (thf)4K(6-Hyp-Hgual) (2a) sowie (thf)4K(8-Hyp-Hgual) (3a) jeweils als Halb-Sandwich-Komplexe in einer racemischen Mischung vorliegen. Die Verbindungen 1, 2, 3 and 4 eignen sich sehr gut dazu, in Metathesereaktionen als Precursor für neuartige chirale Metallozen-Komplexe eingesetzt zu werden. Insbesondere das Kaliumderivat 2 besticht durch die einfache und relativ preiswerte Synthese, die erzielten hohen Ausbeuten (>80%) und seine leichte Handhabbarkeit. In THF als Solvent wurden die Metallocene 5:5-M’(6-Hyp-Hgual)2 (M’ = Mn 5, Fe 6, Ni 8) und 5:5-Fe(8-Hyp-Hgual)2 (7) erhalten. Bei Verwendung einiger redox-aktiver Metallhalogenide beobachtet man jedoch die Zersetzung der Metallocene unter Bildung des oxidativen Kopplungsproduktes (3-Hyp-6-Hgual)2 (9) sowie der Ausscheidung von Metall. Die Umsetzung von Halogeniden der Gruppe 4 (TiCl3 and M’’Cl4 (M’’ = Ti, Zr, Hf)) mit 2 liefert in THF ausschließlich die Metallozendichloride M’’(6-Hyp-Hgual)2Cl2 (M’’ = Ti (10), Zr (11), Hf (12)). Die erhaltenen Metallozenderivate fallen als Diastereomeren-Gemische an, die sich durch fraktionierende Kristallisation teilweise oder vollständig in ihre Bestandteile, das jeweilige R,R-Racemat und das R,S-meso-Diastereomer auftrennen lassen. Die Strukturen der rac-Diastereomere konnten durch Beugungsexperimente aufgeklärt werden. Durch eine Metathese von 2 mit Hyp-Cl kann eine zweite Hypersilylgruppe in die 2-Position des Guajazulen-Gerüstes eingeführt werden. Das entstehende 2,6-bis(Hyp)-H2gua (14) kann anschließend mit nBuLi in das extrem luft- und feuchtigkeitsempfindliche Li[2,6-bis(Hyp)-Hgual] (15) überführt werden, dass wie 1 eine dimere Sandwich-Struktur aufweist. Durch Einführung des zweiten Hypersilylrestes werden die chemischen Eigenschaften des Azulenids dramatisch verändert. Während Verbindung 1 sich als guter Precursor für Metallocene erwies, gelang es uns bislang nicht, entsprechende Derivate der Verbindung 15 zu isolieren.
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.