4 resultados para Method of dihedral angles
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The production, segregation and migration of melt and aqueous fluids (henceforth called liquid) plays an important role for the transport of mass and energy within the mantle and the crust of the Earth. Many properties of large-scale liquid migration processes such as the permeability of a rock matrix or the initial segregation of newly formed liquid from the host-rock depends on the grain-scale distribution and behaviour of liquid. Although the general mechanisms of liquid distribution at the grain-scale are well understood, the influence of possibly important modifying processes such as static recrystallization, deformation, and chemical disequilibrium on the liquid distribution is not well constrained. For this thesis analogue experiments were used that allowed to investigate the interplay of these different mechanisms in-situ. In high-temperature environments where melts are produced, the grain-scale distribution in “equilibrium” is fully determined by the liquid fraction and the ratio between the solid-solid and the solid-liquid surface energy. The latter is commonly expressed as the dihedral or wetting angle between two grains and the liquid phase (Chapter 2). The interplay of this “equilibrium” liquid distribution with ongoing surface energy driven recrystallization is investigated in Chapter 4 and 5 with experiments using norcamphor plus ethanol liquid. Ethanol in contact with norcamphor forms a wetting angle of about 25°, which is similar to reported angles of rock-forming minerals in contact with silicate melt. The experiments in Chapter 4 show that previously reported disequilibrium features such as trapped liquid lenses, fully-wetted grain boundaries, and large liquid pockets can be explained by the interplay of the liquid with ongoing recrystallization. Closer inspection of dihedral angles in Chapter 5 reveals that the wetting angles are themselves modified by grain coarsening. Ongoing recrystallization constantly moves liquid-filled triple junctions, thereby altering the wetting angles dynamically as a function of the triple junction velocity. A polycrystalline aggregate will therefore always display a range of equilibrium and dynamic wetting angles at raised temperature, rather than a single wetting angle as previously thought. For the deformation experiments partially molten KNO3–LiNO3 experiments were used in addition to norcamphor–ethanol experiments (Chapter 6). Three deformation regimes were observed. At a high bulk liquid fraction >10 vol.% the aggregate deformed by compaction and granular flow. At a “moderate” liquid fraction, the aggregate deformed mainly by grain boundary sliding (GBS) that was localized into conjugate shear zones. At a low liquid fraction, the grains of the aggregate formed a supporting framework that deformed internally by crystal plastic deformation or diffusion creep. Liquid segregation was most efficient during framework deformation, while GBS lead to slow liquid segregation or even liquid dispersion in the deforming areas.
Resumo:
In this thesis different approaches for the modeling and simulation of the blood protein fibrinogen are presented. The approaches are meant to systematically connect the multiple time and length scales involved in the dynamics of fibrinogen in solution and at inorganic surfaces. The first part of the thesis will cover simulations of fibrinogen on an all atom level. Simulations of the fibrinogen protomer and dimer are performed in explicit solvent to characterize the dynamics of fibrinogen in solution. These simulations reveal an unexpectedly large and fast bending motion that is facilitated by molecular hinges located in the coiled-coil region of fibrinogen. This behavior is characterized by a bending and a dihedral angle and the distribution of these angles is measured. As a consequence of the atomistic detail of the simulations it is possible to illuminate small scale behavior in the binding pockets of fibrinogen that hints at a previously unknown allosteric effect. In a second step atomistic simulations of the fibrinogen protomer are performed at graphite and mica surfaces to investigate initial adsorption stages. These simulations highlight the different adsorption mechanisms at the hydrophobic graphite surface and the charged, hydrophilic mica surface. It is found that the initial adsorption happens in a preferred orientation on mica. Many effects of practical interest involve aggregates of many fibrinogen molecules. To investigate such systems, time and length scales need to be simulated that are not attainable in atomistic simulations. It is therefore necessary to develop lower resolution models of fibrinogen. This is done in the second part of the thesis. First a systematically coarse grained model is derived and parametrized based on the atomistic simulations of the first part. In this model the fibrinogen molecule is represented by 45 beads instead of nearly 31,000 atoms. The intra-molecular interactions of the beads are modeled as a heterogeneous elastic network while inter-molecular interactions are assumed to be a combination of electrostatic and van der Waals interaction. A method is presented that determines the charges assigned to beads by matching the electrostatic potential in the atomistic simulation. Lastly a phenomenological model is developed that represents fibrinogen by five beads connected by rigid rods with two hinges. This model only captures the large scale dynamics in the atomistic simulations but can shed light on experimental observations of fibrinogen conformations at inorganic surfaces.
Resumo:
In dieser Arbeit aus dem Bereich der Wenig-Nukleonen-Physik wird die neu entwickelte Methode der Lorentz Integral Transformation (LIT) auf die Untersuchung von Kernphotoabsorption und Elektronenstreuung an leichten Kernen angewendet. Die LIT-Methode ermoeglicht exakte Rechnungen durchzufuehren, ohne explizite Bestimmung der Endzustaende im Kontinuum. Das Problem wird auf die Loesung einer bindungzustandsaehnlichen Gleichung reduziert, bei der die Endzustandswechselwirkung vollstaendig beruecksichtigt wird. Die Loesung der LIT-Gleichung wird mit Hilfe einer Entwicklung nach hypersphaerischen harmonischen Funktionen durchgefuehrt, deren Konvergenz durch Anwendung einer effektiven Wechselwirkung im Rahmem des hypersphaerischen Formalismus (EIHH) beschleunigt wird. In dieser Arbeit wird die erste mikroskopische Berechnung des totalen Wirkungsquerschnittes fuer Photoabsorption unterhalb der Pionproduktionsschwelle an 6Li, 6He und 7Li vorgestellt. Die Rechnungen werden mit zentralen semirealistischen NN-Wechselwirkungen durchgefuehrt, die die Tensor Kraft teilweise simulieren, da die Bindungsenergien von Deuteron und von Drei-Teilchen-Kernen richtig reproduziert werden. Der Wirkungsquerschnitt fur Photoabsorption an 6Li zeigt nur eine Dipol-Riesenresonanz, waehrend 6He zwei unterschiedliche Piks aufweist, die dem Aufbruch vom Halo und vom Alpha-Core entsprechen. Der Vergleich mit experimentellen Daten zeigt, dass die Addition einer P-Wellen-Wechselwirkung die Uebereinstimmung wesentlich verbessert. Bei 7Li wird nur eine Dipol-Riesenresonanz gefunden, die gut mit den verfuegbaren experimentellen Daten uebereinstimmt. Bezueglich der Elektronenstreuung wird die Berechnung der longitudinalen und transversalen Antwortfunktionen von 4He im quasi-elastischen Bereich fuer mittlere Werte des Impulsuebertrages dargestellt. Fuer die Ladungs- und Stromoperatoren wird ein nichtrelativistisches Modell verwendet. Die Rechnungen sind mit semirealistischen Wechselwirkungen durchgefuert und ein eichinvarianter Strom wird durch die Einfuehrung eines Mesonaustauschstroms gewonnen. Die Wirkung des Zweiteilchenstroms auf die transversalen Antwortfunktionen wird untersucht. Vorlaeufige Ergebnisse werden gezeigt und mit den verfuegbaren experimentellen Daten verglichen.
Resumo:
In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.