3 resultados para Metals -- Analysis
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Röntgenabsorptionsspektroskopie (Extended X-ray absorption fine structure (EXAFS) spectroscopy) ist eine wichtige Methode zur Speziation von Schwermetallen in einem weiten Bereich von umweltrelevanten Systemen. Um Strukturparameter wie Koordinationszahl, Atomabstand und Debye-Waller Faktoren für die nächsten Nachbarn eines absorbierenden Atoms zu bestimmen, ist es für experimentelle EXAFS-Spektren üblich, unter Verwendung von Modellstrukturen einen „Least-Squares-Fit“ durchzuführen. Oft können verschiedene Modellstrukturen mit völlig unterschiedlicher chemischer Bedeutung die experimentellen EXAFS-Daten gleich gut beschreiben. Als gute Alternative zum konventionellen Kurven-Fit bietet sich das modifizierte Tikhonov-Regularisationsverfahren an. Ergänzend zur Tikhonov-Standardvariationsmethode enthält der in dieser Arbeit vorgestellte Algorithmus zwei weitere Schritte, nämlich die Anwendung des „Method of Separating Functionals“ und ein Iterationsverfahren mit Filtration im realen Raum. Um das modifizierte Tikhonov-Regularisationsverfahren zu testen und zu bestätigen wurden sowohl simulierte als auch experimentell gemessene EXAFS-Spektren einer kristallinen U(VI)-Verbindung mit bekannter Struktur, nämlich Soddyit (UO2)2SiO4 x 2H2O, untersucht. Die Leistungsfähigkeit dieser neuen Methode zur Auswertung von EXAFS-Spektren wird durch ihre Anwendung auf die Analyse von Proben mit unbekannter Struktur gezeigt, wie sie bei der Sorption von U(VI) bzw. von Pu(III)/Pu(IV) an Kaolinit auftreten. Ziel der Dissertation war es, die immer noch nicht voll ausgeschöpften Möglichkeiten des modifizierten Tikhonov-Regularisationsverfahrens für die Auswertung von EXAFS-Spektren aufzuzeigen. Die Ergebnisse lassen sich in zwei Kategorien einteilen. Die erste beinhaltet die Entwicklung des Tikhonov-Regularisationsverfahrens für die Analyse von EXAFS-Spektren von Mehrkomponentensystemen, insbesondere die Wahl bestimmter Regularisationsparameter und den Einfluss von Mehrfachstreuung, experimentell bedingtem Rauschen, etc. auf die Strukturparameter. Der zweite Teil beinhaltet die Speziation von sorbiertem U(VI) und Pu(III)/Pu(IV) an Kaolinit, basierend auf experimentellen EXAFS-Spektren, die mit Hilfe des modifizierten Tikhonov-Regularisationsverfahren ausgewertet und mit Hilfe konventioneller EXAFS-Analyse durch „Least-Squares-Fit“ bestätigt wurden.
Resumo:
Die Verwendung von Metallen zur Entwicklung der heutigen fortschrittlichen technologischenrnGesellschaft lässt auf eine lange Geschichte zurück blicken. Im Zuge des letzten Jahrhundertsrnwurde realisiert, dass die chemischen und radioaktiven Eigenschaften von Metallen einernernsthafte Bedrohung für die Menschheit darstellen können. In der modernen Geochemie ist esrnallgemein akzeptiert, dass die spezifischen physikochemische Formen entscheidender sind, alsrndas Verhalten der gesamten Konzentration der Spurenmetalle in der Umwelt. Die Definition derrnArtbildung kann grob als die Identifizierung und Quantifizierung der verschiedenen Formen oderrnPhasen für ein Element zugeordnet werden. Die chemische Extraktion ist eine gemeinsamernSpeziierungstechnik bei der die Fraktionierung des Gesamtmetallgehaltes zur Analyse der Quellernanthropogener Metallkontamination und zur Vorhersage der Bioverfügbarkeit von verschiedenenrnMetallformen dient. Die Philosophie der partiellen und sequenziellen Extraktionsmethodernbesteht darin, dass insbesondere das Extraktionsmittel phasenspezifisch unter chemischemrnAngriff unterschiedlicher Mischungsformen steht. Die Speziation von Metall ist wichtig bei derrnBestimmung der Toxizität, Mobilität, Bioverfügbarkeit des Metalls und damit ihr Schicksal inrnder Umwelt und biologischem System. Die Artenbildungsanalyse kann für das Verständnis derrnAuswirkung auf die menschliche Gesundheit und bei ökologischen Risiken durch diernQuantifizierung von Metallspezies bei einem Untersuchungs-standort angewendet werden undrnanschließend können Sanierungsstrategien für den Standort umgesetzt werden. Mit Hilfe derrnSpezifizierung wurden Arsen und Kupfer in landwirtschaftlichem Kalkdünger und Thallium inrnkontaminierten Böden untersucht und in den folgenden Abschnitten im Einzelnen dargestellt.
Resumo:
In order to reduce the costs of crystalline silicon solar cells, low-cost silicon materials like upgraded metallurgical grade (UMG) silicon are investigated for the application in the photovoltaic (PV) industry. Conventional high-purity silicon is made by cost-intensive methods, based on the so-called Siemens process, which uses the reaction to form chlorosilanes and subsequent several distillation steps before the deposition of high-purity silicon on slim high-purity silicon rods. UMG silicon in contrast is gained from metallurgical silicon by a rather inexpensive physicochemical purification (e.g., acid leaching and/or segregation). However, this type of silicon usually contains much higher concentrations of impurities, especially 3d transition metals like Ti, Fe, and Cu. These metals are extremely detrimental in the electrically active part of silicon solar cells, as they form recombination centers for charge carriers in the silicon band gap. This is why simple purification techniques like gettering, which can be applied between or during solar cell process steps, will play an important role for such low-cost silicon materials. Gettering in general describes a process, whereby impurities are moved to a place or turned into a state, where they are less detrimental to the solar cell. Hydrogen chloride (HCl) gas gettering in particular is a promising simple and cheap gettering technique, which is based on the reaction of HCl gas with transition metals to form volatile metal chloride species at high temperatures.rnThe aim of this thesis was to find the optimum process parameters for HCl gas gettering of 3d transition metals in low-cost silicon to improve the cell efficiency of solar cells for two different cell concepts, the standard wafer cell concept and the epitaxial wafer equivalent (EpiWE) cell concept. Whereas the former is based on a wafer which is the electrically active part of the solar cell, the latter uses an electrically inactive low-cost silicon substrate with an active layer of epitaxially grown silicon on top. Low-cost silicon materials with different impurity grades were used for HCl gas gettering experiments with the variation of process parameters like the temperature, the gettering time, and the HCl gas concentration. Subsequently, the multicrystalline silicon neighboring wafers with and without gettering were compared by element analysis techniques like neutron activation analysis (NAA). It was demonstrated that HCl gas gettering is an effective purification technique for silicon wafers, which is able to reduce some 3d transition metal concentrations by over 90%. Solar cells were processed for both concepts which could demonstrate a significant increase of the solar cell efficiency by HCl gas gettering. The efficiency of EpiWE cells could be increased by HCl gas gettering by approximately 25% relative to cells without gettering. First process simulations were performed based on a simple model for HCl gas gettering processes, which could be used to make qualitative predictions.