2 resultados para Metal Forming, Large Deformation, Geometrical Nonlinearity, Meshless Method, FEM
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die hygroskopischen Eigenschaften sind wichtige Parameter des atmosphärischen Aerosols. Sie beeinflussen sowohl direkt über den Strahlungsantrieb, als auch indirekt über die Wechselwirkung von Aerosol und Wolken die globale Strahlungsbilanz und somit das Klima. Auch die Sichtweiteveränderung ist von ihnen abhängig. Sie beeinflussen die Partikeldeposition in der Lunge und müssen zur Vermeidung von Artefaktbildung bei der Aerosolmessung berücksichtigt werden.
Die vorliegende Dissertation beinhaltet Messungen des wasserlöslichen Volumenanteils und des hygroskopischen Wachstumsfaktors des atmosphärischen Aerosols. Mit diesen Untersuchungen konnte der überwiegende Teil (50 nm bis 4 µm Partikeldurchmesser) des für atmosphärische Prozesse relevanten Größenbereichs gleichzeitig größenaufgelöst und detailliert erfasst werden. Messungen wurden in ruralen, semi-urbanen und frei-troposphärischen Luftmassen durchgeführt. Messverfahren sind die SoFA (Water-Soluble Fraction of Large and Giant Atmospheric Particles)-Methode und der HTDMA (Hygroscopic Tandem Differential Mobility Analyzer). Im Rahmen dieser Arbeit wurde die SoFA-Methode weiterentwickelt.
Ein umfangreiches Messprogramm zeigt, dass der mittlere lösliche Volumenanteil des Aerosols mit Werten von ca. 59 % geringe Variationen zwischen den Messstandorten aufweist, lediglich in frei-troposphärischen Luftmassen liegt er mit 66 % erwartungsgemäß höher. Betrachtet man die Daten größenaufgelöst, so zeigt sich, dass im Größenbereich zwischen 200 und 500 nm Partikeldurchmesser der lösliche Volumenanteil ein Maximum aufweist. Ein in semi-urbanem Aerosol gemessener Jahresgang weist, vor allem für Partikel kleiner 300 nm, im Sommer geringere Werte als im Winter auf. Unterhalb 300 nm Partikeldurchmesser treten üblicherweise zwei, oberhalb bis zu drei Partikeltypen unterschiedlicher Hygroskopizität auf: der fast unlösliche Partikeltyp mit löslichen Volumenanteilen bis 12 %, der wahrscheinlich aus Ruß, sekundärem organischem, mineralischem und biologischem Material besteht; der teilweise lösliche Partikeltyp (50 bis 75 %), der als Mischpartikel anzusprechen ist; schließlich der überwiegend lösliche Partikeltyp (ca. 90 %), der wahrscheinlich durch Wolkenprozessierung entsteht. Der Unterschied zwischen den Messstandorten ist auch hier gering. Üblicherweise dominieren die löslicheren Partikeltypen mit relativen Anteilen von 60 bis 95 %, wobei sich ein Minimum der Häufigkeit der löslicheren Partikel zwischen 1.5 und 2.5 µm zeigt. Abschließende größenaufgelöste Modellrechnungen zum Aerosol-Feuchtewachstum unterstreichen die Relevanz dieser Untersuchungen für Strahlungs- und Wolkenprozesse.
Resumo:
Wir haben die linearen und nichtlinearen optischen Eigenschaften von dünnen Schichten und planaren Wellenleitern aus mehreren konjugierten Polymeren (MEH-PPV und P3AT) und Polymeren mit -Elektronen Systemen in der Seitenkette (PVK und PS) untersucht und verglichen. PVK und PS haben relativ kleine Werte des nichtlinearen Brechungsindex n2 bei 532 nm, nämlich (1,2 ± 0,5)10-14 cm2/W und (2,6 ± 0,5) 10-14 cm2/W.rnWir haben die linearen optischen Konstanten von mehreren P3ATs untersucht, insbesondere den Einfluss der Regioregularität und Kettenlänge der Alkylsubstituenten. Wir haben das am besten geeignete Polymere für Wellenleiter Anwendungen identifiziert, welches P3BT-ra genannt ist. Wir haben die linearen optischen Eigenschaften dünner Schichten des P3BT-ra untersucht, die mit Spincoating aus verschiedenen Lösungsmitteln mit unterschiedlichen Siedetemperaturen präparieret wurden. Wir haben festgestellt, dass P3BT-ra Filme aus Toluol-Lösungen die am besten geeigneten Wellenleiter für die intensitätsabhängigen Prismen-Kopplungs Experimente sind, weil diese geringe Wellenleiterdämpfungsverluste bei = 1064 nm haben. rnWir haben die Dispersionen des Wellenleiterdämfungsverlustes gw, des nichtlinearen Brechungsindex n2 und des nichtlinearen Absorptionskoeffizienten 2 von Wellenleitern aus P3BT-ra im Bereich von 700 - 1500 nm gemessen. Wir haben große Werte des nichtlinearen Brechungsindex bis 1,5x10-13 cm2/W bei 1150 nm beobachtet. Wir haben gefunden, dass die Gütenkriterien (“figures of merit“) für rein optische Schalter im Wellenlängebereich 1050 - 1200 nm erfüllt sind. Dieser Bereich entspricht dem niederenergetischen Ausläufer der Zwei-Photonen-Absorption. Die Gütekriterien von P3BT-ra gehören zu den besten der bisher bekannten Werte von konjugierten Polymeren.rnWir haben gefunden, dass P3BT-ra ein vielversprechender Kandidat für integriert-optische Schalter ist, weil es eine gute Kombination aus großer Nichtlinearität dritter Ordnung, geringen Wellenleiterdämpfungverlusten und ausreichender Photostabilität zeigt. rnWir haben einen Vergleich der gemessenen Dispersion von gw, n2 und 2 mit der Theorie durchgeführt. Durch Kurvenanpassung der Dispersion von gw haben wir gefunden, dass Rayleigh-Streuung der dominierende Dämpfungsmechanismus in MEH-PPV und P3BT-ra Wellenleitern ist. Ein quantenmechanischer Ansatz wurde zur Berechnung der nichtlinearen Suszeptibilität dritter Ordnung (3) verwendet, um die gemessenen Spektren von n2 und 2 von P3BT-ra und MEH-PPV zu simulieren. Dies kann erklären, dass sättigbare Absorption und Zwei-Photonen Absorption die hauptsächlichen Effekte sind, welche die Dispersion von n2 und 2 verursachen. rn