15 resultados para Membranmechanik, AFM, porenüberspannende Membranen, nano-BLM
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Membranen spielen eine essentielle Rolle bei vielen wichtigen zellulären Prozessen. Sie ermöglichen die Erzeugung von chemischen Gradienten zwischen dem Zellinneren und der Umgebung. Die Zellmembran übernimmt wesentliche Aufgaben bei der intra- und extrazellulären Signalweiterleitung und der Adhäsion an Oberflächen. Durch Prozesse wie Endozytose und Exozytose werden Stoffe in oder aus der Zelle transportiert, eingehüllt in Vesikel, welche aus der Zellmembran geformt werden. Zusätzlich bietet sie auch Schutz für das Zellinnere. Der Hauptbestandteil einer Zellmembran ist die Lipiddoppelschicht, eine zweidimensionale fluide Matrix mit einer heterogenen Zusammensetzung aus unterschiedlichen Lipiden. In dieser Matrix befinden sich weitere Bausteine, wie z.B. Proteine. An der Innenseite der Zelle ist die Membran über Ankerproteine an das Zytoskelett gekoppelt. Dieses Polymernetzwerk erhöht unter anderem die Stabilität, beeinflusst die Form der Zelle und übernimmt Funktionenrnbei der Zellbewegung. Zellmembranen sind keine homogenen Strukturen, je nach Funktion sind unterschiedliche Lipide und Proteine in mikrsokopischen Domänen angereichert.Um die grundlegenden mechanischen Eigenschaften der Zellmembran zu verstehen wurde im Rahmen dieser Arbeit das Modellsystem der porenüberspannenden Membranen verwendet.Die Entwicklung der porenüberspannenden Membranen ermöglicht die Untersuchung von mechanischen Eigenschaften von Membranen im mikro- bis nanoskopischen Bereich mit rasterkraftmikroskopischen Methoden. Hierbei bestimmen Porosität und Porengröße des Substrates die räumliche Auflösung, mit welcher die mechanischen Parameter untersucht werdenrnkönnen. Porenüberspannende Lipiddoppelschichten und Zellmembranen auf neuartigen porösen Siliziumsubstraten mit Porenradien von 225 nm bis 600 nm und Porositäten bis zu 30% wurden untersucht. Es wird ein Weg zu einer umfassenden theoretischen Modellierung der lokalen Indentationsexperimente und der Bestimmung der dominierenden energetischen Beiträge in der Mechanik von porenüberspannenden Membranen aufgezeigt. Porenüberspannende Membranen zeigen eine linear ansteigende Kraft mit zunehmender Indentationstiefe. Durch Untersuchung verschiedener Oberflächen, Porengrößen und Membranen unterschiedlicher Zusammensetzung war es für freistehende Lipiddoppelschichten möglich, den Einfluss der Oberflächeneigenschaften und Geometrie des Substrates, sowie der Membranphase und des Lösungsmittels auf die mechanischen Eigenschaften zu bestimmen. Es ist möglich, die experimentellen Daten mit einem theoretischen Modell zu beschreiben. Hierbei werden Parameter wie die laterale Spannung und das Biegemodul der Membran bestimmt. In Abhängigkeit der Substrateigenschaften wurden für freitragende Lipiddoppelschichten laterale Spannungen von 150 μN/m bis zu 31 mN/m gefunden für Biegemodulde zwischen 10^(−19) J bis 10^(−18) J. Durch Kraft-Indentations-Experimente an porenüberspannenden Zellmembranen wurde ein Vergleich zwischen dem Modell der freistehenden Lipiddoppelschichten und nativen Membranen herbeigeführt. Die lateralen Spannungen für native freitragende Membranen wurden zu 50 μN/m bestimmt. Weiterhin konnte der Einfluss des Zytoskeletts und der extrazellulä-rnren Matrix auf die mechanischen Eigenschaften bestimmt und innerhalb eines basolateralen Zellmembranfragments kartiert werden, wobei die Periodizität und der Porendurchmesser des Substrates das räumliche Auflösungsvermögen bestimmen. Durch Fixierung der freistehenden Zellmembran wurde das Biegemodul der Membran um bis zu einem Faktor 10 erhöht. Diese Arbeit zeigt wie lokal aufgelöste, mechanische Eigenschaften mittels des Modellsystems der porenüberspannenden Membranen gemessen und quantifiziert werden können. Weiterhin werden die dominierenden energetischen Einflüsse diskutiert, und eine Vergleichbarkeit zurnnatürlichen Membranen hergestellt.rn
Resumo:
Biologische Membranen sind Fettmolekül-Doppelschichten, die sich wie zweidimensionale Flüssigkeiten verhalten. Die Energie einer solchen fluiden Oberfläche kann häufig mit Hilfe eines Hamiltonians beschrieben werden, der invariant unter Reparametrisierungen der Oberfläche ist und nur von ihrer Geometrie abhängt. Beiträge innerer Freiheitsgrade und der Umgebung können in den Formalismus mit einbezogen werden. Dieser Ansatz wird in der vorliegenden Arbeit dazu verwendet, die Mechanik fluider Membranen und ähnlicher Oberflächen zu untersuchen. Spannungen und Drehmomente in der Oberfläche lassen sich durch kovariante Tensoren ausdrücken. Diese können dann z. B. dazu verwendet werden, die Gleichgewichtsposition der Kontaktlinie zu bestimmen, an der sich zwei aneinander haftende Oberflächen voneinander trennen. Mit Ausnahme von Kapillarphänomenen ist die Oberflächenenergie nicht nur abhängig von Translationen der Kontaktlinie, sondern auch von Änderungen in der Steigung oder sogar Krümmung. Die sich ergebenden Randbedingungen entsprechen den Gleichgewichtsbedingungen an Kräfte und Drehmomente, falls sich die Kontaktlinie frei bewegen kann. Wenn eine der Oberflächen starr ist, muss die Variation lokal dieser Fläche folgen. Spannungen und Drehmomente tragen dann zu einer einzigen Gleichgewichtsbedingung bei; ihre Beiträge können nicht mehr einzeln identifiziert werden. Um quantitative Aussagen über das Verhalten einer fluiden Oberfläche zu machen, müssen ihre elastischen Eigenschaften bekannt sein. Der "Nanotrommel"-Versuchsaufbau ermöglicht es, Membraneigenschaften lokal zu untersuchen: Er besteht aus einer porenüberspannenden Membran, die während des Experiments durch die Spitze eines Rasterkraftmikroskops in die Pore gedrückt wird. Der lineare Verlauf der resultierenden Kraft-Abstands-Kurven kann mit Hilfe der in dieser Arbeit entwickelten Theorie reproduziert werden, wenn der Einfluss von Adhäsion zwischen Spitze und Membran vernachlässigt wird. Bezieht man diesen Effekt in die Rechnungen mit ein, ändert sich das Resultat erheblich: Kraft-Abstands-Kurven sind nicht länger linear, Hysterese und nichtverschwindende Trennkräfte treten auf. Die Voraussagen der Rechnungen könnten in zukünftigen Experimenten dazu verwendet werden, Parameter wie die Biegesteifigkeit der Membran mit einer Auflösung im Nanometerbereich zu bestimmen. Wenn die Materialeigenschaften bekannt sind, können Probleme der Membranmechanik genauer betrachtet werden. Oberflächenvermittelte Wechselwirkungen sind in diesem Zusammenhang ein interessantes Beispiel. Mit Hilfe des oben erwähnten Spannungstensors können analytische Ausdrücke für die krümmungsvermittelte Kraft zwischen zwei Teilchen, die z. B. Proteine repräsentieren, hergeleitet werden. Zusätzlich wird das Gleichgewicht der Kräfte und Drehmomente genutzt, um mehrere Bedingungen an die Geometrie der Membran abzuleiten. Für den Fall zweier unendlich langer Zylinder auf der Membran werden diese Bedingungen zusammen mit Profilberechnungen kombiniert, um quantitative Aussagen über die Wechselwirkung zu treffen. Theorie und Experiment stoßen an ihre Grenzen, wenn es darum geht, die Relevanz von krümmungsvermittelten Wechselwirkungen in der biologischen Zelle korrekt zu beurteilen. In einem solchen Fall bieten Computersimulationen einen alternativen Ansatz: Die hier präsentierten Simulationen sagen voraus, dass Proteine zusammenfinden und Membranbläschen (Vesikel) bilden können, sobald jedes der Proteine eine Mindestkrümmung in der Membran induziert. Der Radius der Vesikel hängt dabei stark von der lokal aufgeprägten Krümmung ab. Das Resultat der Simulationen wird in dieser Arbeit durch ein approximatives theoretisches Modell qualitativ bestätigt.
Resumo:
Im Rahmen dieser Arbeit wurden drei neue Modelle zur funktionellen Mimiese biologischer Membranen im Bereich der Bionanotechnologie entwickelt. Um den Rahmen der notwendigen Faktoren und Komponenten für biomimetische Membranmodelle abzustecken, wurde das biologische Vorbild im Bezug auf Zusammensetzung, Organisation und Funktion analysiert. Die daraus abgeleiteten Erkenntnisse erlauben das Erreichen von biologisch relevanten Membranwiderständen im Bereich von mehreren MOhm cm2 und eine gute lokale Fluidität. Ein weiteres Ziel dieser Arbeit war die Entwicklung einer Hierachie unterschiedlich stark von der Festkörperoberfläche entkoppelter Membranen zur Vergrößerung des submembranen Raumes. Diese Ziele konnten realisiert werden. Das auf archaealen Etherlipiden basierende DPTL-System wurde analog dem biologischen Vorbild stereoselektiv synthetisiert und ist in der Lage die Membran bei maximaler Elongation des TEG-Spacers mit mehr als 2 nm von der Oberfläche zu entkoppeln. Die erzielten Wiederstände liegen im hohen ein- bis zweistelligen MOhm-Bereich, die Kapazität entspricht mit 0,5 µF cm-2 ebenfalls dem Wert biologischer Membranen. Die Membraneigenschaften wurden mit Hilfe von SPS, EIS, IR-Spektroskopie, QCM, AFM und Kontaktwinkelmessungen charakterisiert. Die Funktionalität und lokale Fluidität der DPTL-Membran konnte anhand des Valinomycin vermittelten K+-Transports über die Membran gezeigt werden. Fluide Elektroden oder laterale Verdünnung mit TEGL erlauben den Einbau größerer Ionenkanäle. Lipo-Glycopolymere (LGP) mit unterschiedlichen Kettenlängen wurden mit Hilfe der kontrollierten radikalischen Polymerisation mit einer PD < 1.2 synthetisiert. Es zeigte sich, daß die Vororientierung der LGPs auf dem LB-Trog, gefolgt von einem LB-Übertrag auf einen funktionalisierten Träger mit photoreaktivem SAM, nach Belichten des Systems zu einer verlässlichen kovalenten Anbindung der supramolekularen LGP-Architektur führt. Da die Lipo-Glycopolymerketten am Glycopolymerterminus nur mit oberflächennahen Repetiereinheiten an die photoaktivierte Oberfläche binden, sind sie in der Lage Oberflächenrauhigkeiten des Festkörpersubstrates auszugleichen. Die photochemische Immobilisierung von funktionell orientierten supramolekularen LGP-Architekturen auf Goldoberflächen resultiert in tBLMs mit großen vertikalen Enkopplungen der Membran von der Festkörperoberfläche (>8 nm). Der funktionelle Ionentransport von Kaliumionen durch Valinomycin zeigt eine ausreichende lokale Fluidität der Membran die mit einem guten Membranwiderstand (mehrere MOhm) kombiniert ist. Große Membran-Oberflächenentkopplungen konnten mit Hilfe plasmapolymerisierter elektrophiler Polymere erreicht werden. Filmdicken von 50 nm sind mit homogener Oberfläche und Rauhigkeiten im Bereich von Nanometern möglich. Das System zeigt interessante fluide Eigenschaften mit guten Erholungsraten bei FRAP-Experimenten (Diffusionskonstanten von etwa 17 mikro m2 s-1). Die elektrischen Eigenschaften liegen mit Widerständen von wenigen kOhm unterhalb der für gute Membranmimikrie notwendigen Werte. Erstmalig konnte gezeigt werden, daß mit Hilfe dieser Methode inerte Polymere/Plastikträger (zum Beispiel Polypropylen und TOPAS) in effizienter Weise kovalent mit reaktiven Polymeroberflächen modifiziert werden können (Anwendung als DNA-Chip ist beschrieben).
Resumo:
In der Form von Nanokapseln (AmB-HST), Nanoemulsion beziehungsweise multilamellaren Vesikeln (MLV) wurden drei Amphotericin-B-Formulierungen für die orale Applikation entwickelt, charakterisiert und verglichen. Die neuartige homogene Nanokapsel-Formulierung des hydrophoben Polyen-Antimykotikums Amphotericin B wurde in Analogie zu einem für Simvastatin und andere Arzneistoffe etablierten Prozess aus der Reinsubstanz, Lezithin und Gelatine mit Hilfe des HST-Verfahrens hergestellt. Photometrische Untersuchungen zeigten, dass das Endprodukt aus Monomeren aufgebaut ist. Mittels Mikroskopie ließen sich die Aggregate vor der Umhüllung mit Lezithin und Gelatine im Ausgangsmaterial als individuelle kugelförmige Arzneistoffpartikel darstellen. Strukturuntersuchungen mit dynamischer licht streuung (DLS) zeigten eine enge Größenverteilung der verkapselten Partikel von ca. 1 µm. Die Struktur der Hülle der HST-Partikel wurde erstmalig mit Neutronenstreuung unter Verwendung der Deuterium-basierten Lösungsmittel kontrastmethode aufgeklärt. Durch die teilweise Kontrastmaskierung des Partikelkerns bei der Neutronenstreuung konnte die Lezithin-Gelatine-Hülle als eine dünne, 5,64 ± 0.18 nm dicke Schicht aufgelöst werden, welche der biologischen Lipidmembran ähnlich, im Vergleich aber geringfügig größer ist. Dieses Resultat eröffnet Wege für die Optimierung der Formulierung von pharmazeutischen Nanopartikeln, z.B. durch Oberflächenmodifizierungen. Weitere Untersuchungen mittels Kleinwinkelneutronenstreuung unter Verwendung der D-Kontrastvariation deuten darauf hin, dass die Komponenten der Nanokapseln nicht den gleichen Masseschwerpunkt haben, sondern asymmetrisch aufgebaut sind und dass die stärker streuenden Domänen weiter außen liegen. Die Partikel sind im Vergleich zu Liposomen dichter. In-Vitro Freisetzungsstudien belegen das Solubilisierungsvermögen des HST-Systems, wonach die Freisetzung des Arzneistoffes aus der Formulierung zu allen gemessenen Zeitpunkten höher als diejenige der Reinsubstanz war. rnDie Nanoemulsion-Formulierung von Amphotericin B wurde mit einem Öl und Tensid system, jedoch mit unterschiedlichen Co-Solvenzien, erfolgreich entwickelt. Gemäß der Bestimmung der Löslichkeit in verschiedenen Hilfsstoffen erwies sich der Arzneistoff Amphotericin B als nicht-lipophil, gleichzeitig aber auch als nicht-hydrophil. Die zur Ermittlung der für die Emulsionsbildung notwendigen Hilfstoffkonzentrationen erstellten ternären Diagramme veranschaulichten, dass hohe Öl- und Tensidgehalte zu keiner Emulsionsbildung führten. Dementsprechend betrug der höchste Ölgehalt 10%. Die Tröpfchengröße wuchs mit zunehmender Tensidkonzentration, wobei die Co-Solventmenge der Propylenglykol-haltigen Nanoemulsion indirekt verringert wurde. Für die Transcutol®P-haltige Nanoemulsion hingegen wurde das Gegenteil beobachtet, nämlich eine Abnahme der Tröpfchengröße bei steigenden Tensidkonzentrationen. Durch den Einschluss des Arzneistoffes wurde nicht die Viskosität der Formulierung, sondern die Tröpfchengröße beeinflusst. Der Wirkstoffeinschluss führte zu höheren Tröpfchengrößen. Mit zunehmender Propylenglykolkonzentration wurde der Wirkstoffgehalt erhöht, mit zunehmender Transcutol®P-Konzentration dagegen vermindert. UV/VIS-spektroskopische Analysen deuten darauf hin, dass in beiden Formulierungen Amphotericin B als Monomer vorliegt. Allerdings erwiesen sich die Formulierungen Caco-2-Zellen und humanen roten Blutkörperchen gegenüber als toxisch. Da die Kontrollproben eine höhere Toxizität als die wirkstoffhaltigen Formulierungen zeigten, ist die Toxizität nicht nur auf Amphotericin, sondern auch auf die Hilfsstoffe zurückzuführen. Die solubilisierte Wirkstoffmenge ist in beiden Formulierungen nicht ausreichend im Hinblick auf die eingesetzte Menge an Hilfsstoff nach WHO-Kriterien. Gemäß diesen Untersuchungen erscheinen die Emulsions-Formulierungen für die orale Gabe nicht geeignet. Dennoch sind Tierstudien notwendig, um den Effekt bei Tieren sowie die systemisch verfügbare Wirkstoffmenge zu ermitteln. Dies wird bestandskräftige Schlussfolgerungen bezüglich der Formulierung und Aussagen über mögliche Perspektiven erlauben. Nichtsdestotrotz sind die Präkonzentrate sehr stabil und können bei Raumtemperatur gelagert werden.rnDie multilamellar-vesikulären Formulierungen von Amphotericin B mit ungesättigten und gesättigten neutralen Phospholipiden und Cholesterin wurden erfolgreich entwickelt und enthielten nicht nur Vesikel, sondern auch zusätzliche Strukturen bei zunehmender Cholesterinkonzentration. Mittels Partikelgrößenanalyse wurden bei den Formulierungen mit gesättigten Lipiden Mikropartikel detektiert, was abhängig von der Alkylkettenlänge war. Mit dem ungesättigten Lipid (DOPC) konnten hingegen Nanopartikel mit hinreichender Verkapselung und Partikelgrößenverteilung gebildet werden. Die Ergebnisse der thermischen und FTIR-spektroskopischen Analyse, welche den Einfluss des Arzneistoffes ausschließen ließen, liefern den Nachweis für die mögliche, bereits in der Literatur beschriebene Einlagerung des Wirkstoffs in lipid- und/oder cholesterinreiche Membranen. Mit Hilfe eines linearen Saccharosedichtegradienten konnte die Formulierung in Vesikel und Wirkstoff-Lipid-Komplexe nach bimodaler Verteilung aufgetrennt werden, wobei der Arzneistoff stärker mit den Komplexen als mit den Vesikeln assoziiert ist. Bei den Kleinwinkelneutronenstreu-Experimenten wurde die Methode der Kontrastvariation mit Erfolg angewendet. Dabei konnte gezeigt werden, dass Cholesterol in situ einen Komplex mit Amphotericin B bildet. Diesen Sachverhalt legt unter anderem die beobachtete Differenz in der äquivalenten Streulängendichte der Wirkstoff-Lipid- und Wirkstoff-Lipid-Cholesterin-haltigen kleinen unilamellaren Vesikeln nahe. Das Vorkommen von Bragg-Peaks im Streuprofil weist auf Domänen hin und systematische Untersuchungen zeigten, dass die Anzahl der Domänen mit steigendem Cholesteringehalt zunimmt, ab einem bestimmten Grenzwert jedoch wieder abnimmt. Die Domänen treten vor allem nahe der Außenfläche der Modellmembran auf und bestätigen, dass der Wirkstoff in den Cholesterinreichen Membranen vertikal eingelagert ist. Die Formulierung war sowohl Caco-2-Zellen als auch humanen roten Blutkörperchen gegenüber nicht toxisch und erwies sich unter Berücksichtigung der Aufnahme in Caco-2-Zellen als vielversprechend für die orale Applikation. Die Formulierung zeigt sich somit aussichtsreich und könnte in Tabletten weiterverarbeitet werden. Ein Filmüberzug würde den Wirkstoff gegen die saure Umgebung im Magen schützen. Für die Bestimmung der systemischen Verfügbarkeit der Formulierung sind Tierstudien notwendig. Die entwickelten multilamellaren Formulierungen einschließlich der Wirkstoff-Cholesterin-Komplexe bieten somit gute Aussichten auf die mögliche medizinische Anwendung. rnrn
Resumo:
Abstract Im Rahmen dieser Arbeit wurden verschiedene neue Synthesewege zur Darstellung poröser Kieselgele untersucht. Als porenbildende Template wurden hierzu eine Reihe niedermolekularer und polymerer Verbindungen eingesetzt. Dabei sollten die Teilchenmorphologie und die Parameter der Porenstruktur durch die Bedingungen bei der Reaktion und nicht durch eine Nachbehandlung eingestellt werden. Hauptziel der Arbeit war es, eine Synthese zu entwickeln, bei der durch den Einsatz eines geeigneten Templats sphärische Kieselgelpartikel mit Porengrößen über 10 nm hergestellt werden können. Zusätzlich zur Materialsynthese gelang es Informationen über den Bildungsmechanismus poröser Kieselgele zu erhalten.Weiterhin wurden die Materialien als Säulenmaterial in der Chromatographie, als Adsorbens zur Probensammlung (sample tracking), als Katalysatorträgermaterial und als Marker für Biomoleküle eingesetzt.
Resumo:
'Responsive' Bürstenpolymere Bürstenpolymere sind definiert verzweigte Makromoleküle, die aus einer Hauptkette und vielen darauf (kovalent) gepfropften Seitenketten bestehen; ist der Pfropfungsgrad hoch und die Hauptkette wesentlich länger als die Seitenketten, dann haben sie die Form semiflexibler molekularer Zylinder. Lassen sich Form bzw. Ausdehnung eines solchen Zylinders gezielt ansteuern, dann könnten diese Moleküle entweder als (Nano-)Sensoren für die entsprechende Umgebungsbedingung oder als molekulare Motoren eingesetzt werden. Die Idee responsiver Bürstenpolymere beruht auf folgender Überlegung: Die gestreckte Konformation der Hauptkette ist entropisch gegenüber einem entsprechenden Knäuel benachteiligt, weshalb sie ,molekulare Federn‘ darstellen, die auf Änderung der repulsiven Wechselwirkung zwischen den Seitenketten reagieren. Dies wurde für den Wechsel zwischen gutem und schlechtem Lösungsmitteln untersucht. Ein zweites Konzept zur Änderung der Molekülform beruht auf der intramolekularen Phasentrennung (,Segmentbildung‘) miteinander unverträglicher Seitenketten in selektiven Lösungsmitteln, da die Hauptkette durch Ausbildung von Mikrophasen entlang des Moleküls ebenfalls aus ihrer gestreckten Form gebracht werden sollte. Die dritte Möglichkeit zur Änderung der Konformation ist die intramolekulare Vernetzung von Seitenketten, die ebenfalls zu verringerter Abstoßung und damit zur Verkürzung der Zylinder führen sollte. Eine weitere wichtige Untersuchung der Arbeit war der Übergang einer geknäuelten Hauptkette zu einer gestreckten Bürste als Funktion der Pfropfdichte. Zur Beantwortung dieser Fragestellungen wurden zylindrische Bürstenpolymere durch ,Grafting Trough‘ und ,Grafting Onto‘ synthetisiert (PS bzw. PI/PS und PnBMA/PMAA mit Kern/Schale- und ,Segment‘-Architektur) und systematisch Pfropfdichte, Vernetzungsgrad (Vernetzung durch gamma-Bestrahlung) und Lösungsbedingungen verändert. Die Möglichkeit gezielter Ansteuerung der Konformationsänderung durch Vernetzung konnte nach polymeranaloger Modifikation von PI/PS-Bürstenpolymeren durch Photovernetzung und vernetzende Komplexierung erfolgreich bestätigt werden. Zur Untersuchung der Probenreihen wurden AFM, Licht- und Neutronenstreuung herangezogen. Die Analysen bestätigten konsistent die Änderung von Steifigkeit, Zylinderquerschnitt und Streckung der Hauptkette durch Variation von Pfropfdichte, Vernetzung und Lösungsmittelqualität. Für die Änderung der Pfropfdichte gehorchen die Parameter dabei Potenzgesetzen.
Resumo:
Das Ziel dieser Arbeit ist die Synthese von Polymerbürsten auf Silizium durch Aufbringen der Reaktionslösung mit einem Pipettiersystem. Dies ist für die Beschichtung von Microcantilever Sensoren interessant, um spezifische Fühler mit funktionellen Polymerschichten, die auf chemische oder physikalische Einflüsse reagieren, zu bauen. Bisherige Synthesemethoden werden in Lösung durchgeführt. Atom Transfer Radical Polymerization ist etabliert, um definierte Schichten von Polymerbürsten herzustellen. Die Kombination mit einer “Spot Printing”-Technik kann eine Alternative sein, um einzelne Cantilever mit einer Breite von 90 μm und einer Länge von 750 μm zu beschichten. Dafür wurde eine Chemie getestet, die mit dem Pipettiersystem Nano-Plotter der Firma Gesim umsetzbar ist. Aus einer Mischung aus Wasser und DMF wurden Poly(N-Isopropylacrylamid)-Bürsten auf Silizium mit Schichtdicken bis zu 40 nm hergestellt. Es war nötig den Nano-Plotter anzupassen, damit zum einen auf die Microcantilever Sensoren pipettiert werden kann und zum andern die Nanoliter großen Tropfen über den Reaktionszeitraum stabil sind. Auf diese Weise konnten Linien mit einer Schichtdicke von ca. 2 nm auf Siliziumwafer hergestellt werden. Die “Spot-Printing” Methode ist daher eine gute Ergänzung zur herkömmlichen Synthese.
Resumo:
This thesis presents a new method to explore the local mechanical properties such as bending modulus or surface tension of artificial and native pore-spanning membranes. Therefore the elastic response of a free-standing membrane to a local indentation by the means of atomic force microscopy is measured. Starting point are highly hexagonal ordered pores in alumina produced by electrochemical anodization of planar aluminium. The homogeneous pore radius can by tailored in the range of 10 nm up to 200 nm, but radius of 33 nm, 90 nm and 200 nm turned out to be best suited for investigation of the mechanical properties of pore-spanning native or artificial membranes. In this work artificial membrane systems consisting of DODAB as a bilayer in gel phase or DOTAP as a fluide membrane are spreaded by vesicle absorption on hexagonal structured pores after chemisorption of a 3-mercaptopropionic acid monolayer. Centrally indenting these nanodrums with an atomic force microscope tip yields force-indentation curves, which are quantitatively analyzed by solving the corresponding shape equations of continuum curvature elasticity. Since the measured response depends in a known way on the system geometry (pore size, tip radius) and on material parameters (bending modulus, lateral tension, adhesion), this opens the possibility to monitor local elastic properties of lipid membranes in a well-controlled setting. Additionally the locally distributed mechanical properties of pore-spanning artificial membranes are compared to those of native pore-spanning membranes. Therefore the basal membrane of MDCK II cells was prepared on porous alumina assays and their mechanical properties were analyzed by means of atomic force microscopy. Finally the elastic behavior such as the Young modulus of living MDCK II cells under various osmotic pressures is investigated. By changing the osmolarity in the extracellular region of MDCK II cells a volume change is induced according to hydration and dehydration of the cells, respectively. This volume change induces also a change in the elastic behavior of the cell, which is quantified by the means of force spectroscopy.
Resumo:
Mixed tethered bilayer lipid membranes (tBLMs) are described based on the self-assembly of a monolayer on template stripped gold, of an archea analogue thiolipid, 2,3-di-o-phytanyl-sn-glycerol-1-tetraethylene glycol-D,L--lipoic acid ester lipid (DPTL), and a newly designed dilution molecule, tetraethylene glycol-D,L--lipoic acid ester (TEGL). The usage of spacer and addition of extra dilution molecules between the substrate and the bilayer is that this architecture provides an ionic reservoir underneath the membrane, avoiding direct contact of the embedded membrane proteins with the gold electrodes and increasing the lateral diffusion of the bilayer, thus allowing for the incorporation of complex channels proteins which are failed in non-diluted systems. The tBLM is completed by fusion of liposomes made from a mixture of 1,2-diphythanolyl-sn-glycero-3-phosphocholine (DPhyPC), cholesterol, and 1,2-diphytanoyl-sn-Glycero-3-phosphate (DPhyPG) in a molar ratio of 6:3:1. Varying the mixing ratio, the optimum mixing ratio was obtained at a dilution factor of DPTL and TEGL at 90%:10%. Only under these conditions, the mixed tBLM showed electrical properties, as shown by EIS, which are comparable to a BLM. With higher dilution factors, a defect-free lipid bilayer was not formed. Formation of bilayers have been characterized by different techniques, such as surface plasmon resonance (SPR), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). Different proteins such as hemolysin, melittin, gramicidin, M2, Maxi-K, nAChR and bacteriohodopsin are incorporated into these tBLMs as shown by SPR and EIS studies. Ionic conductivity at 0 V vs. Ag|AgCl, 3M KCl were measured by EIS measurements. Our results indicate that these proteins have been successfully incorporated into a very stable tBLM environment in a functionally active form. Therefore, we conclude that the mixed tBLMs have been successfully designed as a general platform for biosensing and screening purposes of membrane proteins.
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.
Resumo:
In der vorliegenden Arbeit wurden AFM-Kraft-Abstands-Kurven benutzt, um die mechanischen Eigenschaften dünner Polymerfilme verschiedener Schichtdicken (2 - 400 nm) auf einem sehr viel steiferen Substrat (mechanische Doppelschichten) zu untersuchen. Die mechanischen Eigenschaften einer solchen Probe setzen sich aus den mechanischen Eigenschaften der Bestandteile, d.h. Polymer und Substrat, zusammen. Der Beitrag der Bestandteile hängt von der Schichtdicke und von der Auflagekraft ab. Es wurden existierende Modelle für die Auswertung von an Doppelschichten gemessenen Deformationskurven überprüft und festgestellt, dass kein Modell befriedigende Ergebnisse erzielt. Dies zeigte die Notwendigkeit einer neuen semiempirischen Theorie zur Beschreibung der Deformationskurven von mechanischen Doppelschichten. In dieser Arbeit wird der hyperbolische Fit zu diesem Zweck eingeführt. Die Validität des hyperbolischen Fit wurde anhand von drei Experimenten gezeigt. Alle experimentellen Kurven konnten sehr gut durch den hyperbolischen Fit beschrieben werden. Die Elastizitätsmoduln der Bestandteile konnten in Übereinstimmung mit den Literaturwerten berechnet werden. Die Schichtdicken der Proben konnten in allen Fällen mit großer Exaktheit bestimmt werden. Es wurde zudem die Möglichkeit der Auswertung einzelner Kraft-Abstands-Kurven untersucht. Damit konnte die Schichtdicke der untersuchten Doppelschichten ortsaufgelöst im Submikrometerbereich bestimmt werden und ein verstecktes Substrat detektiert werden. Die Adhäsion an der Grenzfläche Polymer/Substrat hat einen fundamentalen Einfluss auf die mechanischen Eigenschaften der Doppelschicht, der qualitativ im letzten Teil der Doktorarbeit gezeigt werden konnte.
Resumo:
Zusammenfassung rnrnIn dieser Arbeit wurden Untersuchungen an zwei verschiedenen multimeren Proteinkomplexen durchgeführt: Zum einen am Hämocyanin aus Homarus americanus mittels Röntgen-L-Kantenspektroskopie und zum anderen am α-Toxin aus Staphylococcus aureus, hinsichtlich der Interaktion an speziellen Raft-artigen Membranabschnitten, mittels AFM.rnFür das Hämocyanin aus Homarus americanus konnte ein neuer Aspekt bezüglich der Bindung von Sauerstoff aufgezeigt werden. Ein zuvor nicht in Betracht gezogener und diskutierter Einfluss von Wassermolekülen auf diesen Vorgang konnte mittels der Methode der Röntgen-L-Kantenspektroskopie dargestellt werden. Erstmals war es möglich die beiden verschiedenen Beladungszustände (Oxy-, Deoxy-Zustand) des Hämocyanin mittels dieser Methode in physiologisch ähnlicher Umgebung zu untersuchen. Vergleiche der erhaltenen L-Kanten-Spektren mit denen anorganischer Vergleichslösungen ließen auf eine Interaktion von Wassermolekülen mit den beiden Kupferatomen des aktiven Zentrums schließen. Dadurch wurde erstmals ein möglicher Einfluss des Wassers auf den Oxygenierungsprozess des Hämocyanins auf elektronischer Ebene aufgezeigt. Vergleichende Betrachtungen von Röntgenkristallstrukturen verschiedener Typ-3-Kupferproteine bestätigten, dass auch hier ein Einfluss von Wassermolekülen auf die aktiven Zentren möglich ist. Vorgeschlagen wird dabei, dass an Stelle der Überlappung der 3d-Orbitale des Kupfers mit den 2p-Orbitalen des Sauerstoffs, wie sie im sauerstoffbeladenen Zustand auftritt, im sauerstoffunbeladenen Zustand eine Wechselwirkung der 3d-Orbitale des Kupfers mit den LUMOS der Wassermoleküle möglich wird, und ein Elektronen- bzw. Ladungstransfer von den Kupfern auf die Wassermoleküle erfolgen kann. rnAFM-Untersuchungen hinsichtlich der Interaktion des α-Toxins aus Staphylococcus aureus mit oberflächenunterstützten Modellmembranen wiesen darauf hin, dass eine bevorzugte Anbindung und zumindest teilweise Integration der α-Toxine in Raft-artige Membranbereiche stattfindet. Für verschiedene ternäre Lipidsysteme konnten phasenseparierte Modellmembranen abgebildet und die unterschiedlichen Domänenformen zugeordnet werden. Der Anbindungsprozess der Toxine an diese oberflächenunterstützte Modellmembranen erfolgte dann wahrscheinlich vornehmlich an den speziellen Raft-artigen Domänen, wohingegen die Insertion der Poren vorrangig an den Grenzbereichen zwischen den Domänen auftrat. Mögliche Ursache dafür sind die räumlichen Besonderheiten dieser Grenzflächen. Membranen weisen an den Schnittstellen zwischen zwei Domänenformen eine erhöhte Unordnung auf, was sich u.a. in einer geringeren Packungsdichte der Phospholipide und dem erhöhten Freiheitsgrad ihrer Kopfgruppen bemerkbar macht. Außerdem kommt es auf Grund der Interaktion der beteiligten Membranbestandteile Sphingomyelin und Cholesterol untereinander zu einer speziellen Ausrichtung der Phosphocholin-Kopfgruppen und innerhalb der Raft-artigen Domänen zu einer erhöhten Packungsdichte der Phospholipide. Die in dieser Arbeit präsentierten Ergebnisse unterstützten demnach die in der Literatur postulierte Vermutung der bevorzugten Interaktion und Integration der Toxin-Moleküle mit Raft-artigen Membrandomänen. Die Insertion der Pore erfolgt aber wahrscheinlich bevorzugt an den Grenzbereichen zwischen den auftretenden Domänen.rn
Resumo:
Im Rahmen dieser Arbeit wurden zunächst die ausgewählten Lipide anhand ihrer p-ArnIsothermen charakterisiert. Dabei zeigte sich, dass die flüssiganaloge Phase umso ausgeprägter ist, je größer die hydrophile Kopfgruppe des jeweiligen Lipids ist, so dass diese schon bei sehr großen Flächen miteinander wechselwirken. Außerdem wurde das Mischungsverhalten und die Domänenbildung binärer und ternärer Mischungen untersucht.rnDabei konnte im Fall der binären Mischungen der polymerisierbaren Lipide 1 und 2 mit dem perfluorierten Lipid 3 eine Phasenseparation beobachtet werden. Hierbei zeigte sich, dass sowohl die Form als auch die Größe der Domänen durch zwei Faktoren kontrolliert werden konnte, nämlich zum einen durch den Lateraldruck und zum anderen durch die molare Zusammensetzung der binären Mischung. Bei niedrigen Lateraldrücken (10 mN/m) warenrnfluorierte und nichtfluorierte Lipide in der homogenen flüssiganalogen Phase vollständig mischbar. Bei sehr hohen Lateraldrücken (30 mN/m) lag eine nahezu vollständige Entmischung vor, da das Lipid 1 hier schon vollständig auskristallisiert war. Im Fall der binären Mischung 2/3 konnte ein solches Verhalten nicht beobachtet werden, was an dem Phasenverhalten des Lipids 2 liegt. Aber auch hier lies sich die Domänenbildung sowohl überrnden Lateraldruck als auch über die Komposition der binären Mischung kontrollieren. Des Weiteren konnte gezeigt werden, dass die Monoschichten dieser beiden binären Mischungen durch photochemische Polymerisation stabilisiert werden können.rnDer Einfluss des Fluorierungsgrades auf das Phasenseparationsverhalten wurde anhand der binären Mischungen 1/6 und 1/8 untersucht. Es zeigte sich hier, dass sich auch hier in beiden Fällen die Domänenbildung sowohl über den Lateraldruck als auch über die Komposiion der Mischung steuern lies. Ein Vergleich der gefundenen Strukturen belegte darüber hinaus klare Unterschiede zwischen dem fluorierten und teilfluorierten Lipid. Denn in der binären Mischung 1/8 (perfluoriertes Lipid) konnte die hexagonale Grundstruktur, die zuvor schon inrnder binären Mischung 1/3 gefunden wurde, beobachtet werden. Demgegenüber hatten die kristallinen Domänen, die in der binären Mischung 1/6 (teilfluoriertes Lipid) beobachtet wurden, die hexagonale Grundform verloren. Hier wurden rundliche unförmige Domänen gefunden, die zudem deutlich kleiner waren als die bei der Mischung mit dem perfluorierten Lipid gefundenen Domänen. In den ternären Mischungen zeigte sich, dass diese ternären Mischungen eine ähnliche Phasenseparation zeigten wie die binäre Mischung 1/3. Die hier auftretenden kristallanalogen Domänen bestanden aus Lipid 1, wobei die umgebendernflüssiganaloge Matrix die beiden fluorierten Lipide enthielt. Deswegen war es von besonderer Bedeutung wie sich die beiden fluorierten Verbindungen untereinander verhalten würden.rnDazu wurden die p-A Isothermen der binären Mischung 3/5 ausgewertet und dabei zeigte sich, dass sich das Vakzinlipid, sofern der Anteil nicht höher ist als der des fluorierten Matrixlipides, in idealer Weise mit diesem mischt. Eine Untersuchung der Antigen-Antikörper Erkennung der binären Mischungen 3/5 zeigte, dass die Reaktion mit dem Antikörper umso effektiver war, je größer der Anteil des Vakzinlipids 5 war. Allerdings konnte hier kein linearer Zusammenhang gefunden werden. Stattdessen handelte es sich umrneine Sättigungskurve, da bereits ein Anteil an Lipid 5 von 42,2 mol% eine nur geringfügig schwächere Antikörperanbindung zeigte, als das reine Vakzinlipid.
Resumo:
Viele Tiere wie etwa Geckos oder Laubfrösche können mittels ihrer Haftscheiben an Oberflächen kleben. Diese Haftscheiben ermöglichen es den Tieren, sich während ihrerrnFortbewegung an Oberflächen anzuheften und wieder zu lösen unabhängig von denrnvorherrschenden Umweltbedingungen. Frösche besitzen mikro- und nanostrukturierternsowie charakteristisch geformte Haftscheiben an Finger- und Zehenenden. Ihre besonderernevolutionäre Errungenschaft, sich stark und zugleich reversibel in sowohl trockenen alsrnauch feuchten Umgebungen anzuhaften, hat die Wissenschaft zur Nachahmung und Untersuchungrndieser Strukturen inspiriert. Zum besseren Verständnis der Mechanismen vonrnAnhaftung und Loslösung bei Laubfröschen wurden weiche, elastische und mikrostrukturierternOberflächen hergestellt, indem PDMS (Polydimethylsiloxan) auf einer Siliziummaskernmit Hexagonstruktur aufgetragen und vernetzt wurde. Dadurch wurden Anordnungenrnvon hexagonalen Mikrosäulen mit spezifischen geometrischen Eigenschaften undrnunterschiedlichen Kontaktgeometrien (normale, flache Form, T-Form und konkave Formrnder Säulenenden) erhalten. Um den Einfluss der van-der-Waals, hydrodynamischen,rnKapillar-und Adhäsionskräfte zu verstehen, wurden verschiedene experimentelle Ansätzernverfolgt: Die auf eine einzelne Säule wirkenden Adhäsionskräfte wurden mittelsrnRasterkraftmikroskopie gemessen. Dazu wurden speziell hergestellte kolloidale Sensorenrnverwendet. Diese Experimente wurden sowohl mit als auch ohne Flüssigkeitsfilm auf derrnSäule durchgeführt. Die Ergebnisse zeigten den Beitrag von Kapillarkraft und direktenrnKontaktkräften zur Adhäsionskraft bei Vorliegen eines Flüssigkeitsfilms. Die Adhäsionrnfiel umso größer aus, je weniger Flüssigkeit zwischen Sensor und Säule vorhanden war.rnIm Falle einer trockenen Adhäsion zeigte die Säule mit T-Form die höchste Adhäsion. Darndie Haftscheiben der Laubfrösche weich sind, können sie dynamisch ihre Form ändern,rnwas zu einer Änderung der hydrodynamischen Kraft zwischen Scheibe und Oberflächernführt. Der Einfluss der Oberflächenverformbarkeit auf die hydrodynamische Kraft wurderndaher am Modellsystem einer Kugel untersucht, welche sich einer weichen und ebenenrnOberfläche annähert. Dieses System wurde sowohl theoretisch über die Simulation finiterrnElemente als auch experimentell über die Messung mit kolloidalen Sonden untersucht.rnSowohl experimentelle Ergebnisse als auch die Simulationen ergaben eine Abnahme derrnhydrodynamischen Kraft bei Annäherung des kolloidalen Sensors an eine weiche undrnelastische Oberfläche. Beim Entfernen der Sensors von der Oberfläche verstärkte sichrndie hydrodynamische Anziehungskraft. Die Kraft, die zur Trennung eines Partikels von einer Oberfläche in Flüssigkeit notwendig ist, ist für weiche und elastischen Oberflächenrngrößer als für harte Oberflächen. In Bezug zur Bioadhäsion bei Laubfröschen konnternfestgestellt somit festgestellt werden, dass sich der hydrodynamische Anteil zur feuchtenrnBioadhäsion aufgrund der weichen Oberfläche erhöht. Weiterhin wurde der Einflussrndes Aspektverhältnisses der Säulen auf die Reibungskraft mittels eines kolloidalen Sensorsrnuntersucht. Gestreckte Säulen zeigten dabei eine höhere Reibung im Vergleich zu.rnSäulen mit einem gestreckten Hexagon als Querschnitt.
Resumo:
Der Fokus dieser Doktorarbeit liegt auf der kontrollierten Benetzung von festen Oberflächen, die in vielen Bereichen, wie zum Beispiel in der Mikrofluidik, für Beschichtungen und in biologischen Studien von Zellen oder Bakterien, von großer Bedeutung ist.rnDer erste Teil dieser Arbeit widmet sich der Frage, wie Nanorauigkeit das Benetzungsverhalten, d.h. die Kontaktwinkel und die Pinningstärke, von hydrophoben und superhydrophoben Beschichtungen beeinflusst. Hierfür wird eine neue Methode entwickelt, um eine nanoraue Silika-Beschichtung über die Gasphase auf eine superhydrophobe Oberfläche, die aus rauen Polystyrol-Silika-Kern-Schale-Partikeln besteht, aufzubringen. Es wird gezeigt, dass die Topographie und Dichte der Nanorauigkeiten bestimmt, ob sich die Superhydrophobizität verringert oder erhöht, d.h. ob sich ein Flüssigkeitstropfen im Nano-Wenzel- oder Nano-Cassie-Zustand befindet. Das verstärkte Pinning im Nano-Wenzel-Zustand beruht auf dem Eindringen von Flüssigkeitsmolekülen in die Nanoporen der Beschichtung. Im Nano-Cassie-Zustand dagegen sitzt der Tropfen auf den Nanorauigkeiten, was das Pinning vermindert. Die experimentellen Ergebnisse werden mit molekulardynamischen Simulationen in Bezug gesetzt, die den Einfluss der Oberflächenbeschichtungsdichte und der Länge von fluorinierten Silanen auf die Hydrophobizität einer Oberfläche untersuchen. rnEs wurden bereits verschiedenste Techniken zur Herstellung von transparenten superhydrophoben, d.h. extrem flüssigkeitsabweisenden, Oberflächen entwickelt. Eine aktuelle Herausforderung liegt darin, Funktionalitäten einzuführen, ohne die superhydrophoben Eigenschaften einer Oberfläche zu verändern. Dies ist extrem anspruchsvoll, da funktionelle Gruppen in der Regel hydrophil sind. In dieser Arbeit wird eine innovative Methode zur Herstellung von transparenten superhydrophoben Oberflächen aus Janus-Mikrosäulen mit variierenden Dimensionen und Topographien entwickelt. Die Janus-Säulen haben hydrophobe Seitenwände und hydrophile Silika-Oberseiten, die anschließend selektiv und ohne Verlust der superhydrophoben Eigenschaften der Oberfläche funktionalisiert werden können. Diese selektive Oberflächenfunktionalisierung wird mittels konfokaler Mikroskopie und durch das chemische Anbinden von fluoreszenten Molekülen an die Säulenoberseiten sichtbar gemacht. Außerdem wird gezeigt, dass das Benetzungsverhalten durch Wechselwirkungen zwischen Flüssigkeit und Festkörper in der Nähe der Benetzungslinie bestimmt wird. Diese Beobachtung widerlegt das allgemein akzeptierte Modell von Cassie und Baxter und beinhaltet, dass hydrophile Flächen, die durch mechanischen Abrieb freigelegt werden, nicht zu einem Verlust der Superhydrophobizität führen müssen, wie allgemein angenommen.rnBenetzung kann auch durch eine räumliche Beschränkung von Flüssigkeiten kontrolliert werden, z.B. in mikrofluidischen Systemen. Hier wird eine modifizierte Stöber-Synthese verwendet, um künstliche und natürliche Faser-Template mit einer Silika-Schicht zu ummanteln. Nach der thermischen Zersetzung des organischen Templat-Materials entstehen wohldefinierte Silika-Kanäle und Kanalkreuzungen mit gleichmäßigen Durchmessern im Nano- und Mikrometerbereich. Auf Grund ihrer Transparenz, mechanischen Stabilität und des großen Länge-zu-Durchmesser-Verhältnisses sind die Kanäle sehr gut geeignet, um die Füllgeschwindigkeiten von Flüssigkeiten mit variierenden Oberflächenspannungen und Viskositäten zu untersuchen. Konfokale Mikroskopie ermöglicht es hierbei, die Füllgeschwindigkeiten über eine Länge von mehreren Millimetern, sowie direkt am Kanaleingang zu messen. Das späte Füllstadium kann sehr gut mit der Lucas-Washburn-Gleichung beschrieben werden. Die anfänglichen Füllgeschwindigkeiten sind jedoch niedriger als theoretisch vorhergesagt. Wohingegen die vorhergehenden Abschnitte dieser Arbeit sich mit der quasistatischen Benetzung beschäftigen, spielt hier die Dynamik der Benetzung eine wichtige Rolle. Tatsächlich lassen sich die beobachteten Abweichungen durch einen geschwindigkeitsabhängigen Fortschreitkontaktwinkel erklären und durch dynamische Benetzungstheorien modellieren. Somit löst diese Arbeit das seit langem diskutierte Problem der Abweichungen von der Lucas-Washburn-Gleichung bei kleinen Füllgeschwindigkeiten.