4 resultados para Mechanical Characterisation

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim of this thesis was to further extend the applicability of the Fourier-transform (FT) rheology technique especially for non-linear mechanical characterisation of polymeric materials on the one hand and to investigated the influence of the degree of branching on the linear and non-linear relaxation behaviour of polymeric materials on the other hand. The latter was achieved by employing in particular FT-rheology and other rheological techniques to variously branched polymer melts and solutions. For these purposes, narrowly distributed linear and star-shaped polystyrene and polybutadiene homo-polymers with varying molecular weights were anionically synthesised using both high-vacuum and inert atmosphere techniques. Furthermore, differently entangled solutions of linear and star-shaped polystyrenes in di-sec-octyl phthalate (DOP) were prepared. The several linear polystyrene solutions were measured under large amplitude oscillatory shear (LAOS) conditions and the non-linear torque response was analysed in the Fourier space. Experimental results were compared with numerical predictions performed by Dr. B. Debbaut using a multi-mode differential viscoelastic fluid model obeying the Giesekus constitutive equation. Apart from the analysis of the relative intensities of the harmonics, a detailed examination of the phase information content was developed. Further on, FT-rheology allowed to distinguish polystyrene melts and solutions due to their different topologies where other rheological measurements failed. Significant differences occurred under LAOS conditions as particularly reflected in the phase difference of the third harmonic, Ħ3, which could be related to shear thinning and shear thickening behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological membranes are one of the vital key elements of life but are also highly complex architectures. Therefore, various model membrane systems have been developed to enable systematic investigations of different membrane related processes. A biomimetic model architecture should provide a simplified system, which allows for systematic investigation of the membrane while maintaining the essential membrane characteristics such as membrane fluidity or electrical sealing properties. This work has been focused on two complementary parts. In a first part, the behaviour of the whey protein ß-lactoglobulin (ßlg) at a membrane interface has been investigated. Protein-lipid interactions have been studied using Langmuir monolayers at the air-water interface and tethered bilayer lipid membranes. A combination of different surface analytical techniques such as surface plasmon spectroscopy, neutron reflectivity and electrochemical techniques allowed for a detailed analysis of the underlying processes. Those experiments showed that the protein adsorbed in native confirmation, slightly flattened, to hydrophobic monolayers. If hydrophilic bilayers with defects were present, ßlg penetrated the upper layer. Interactions with phospholipids were only observed if the protein was denatured beforehand. Experiments at the air-water interface showed a more rigid conformation of the protein at acidic pH compared to alkaline pH. In the second part of this work, the structure of different model membrane systems has been investigated. Solid supported membrane systems have been established as powerful biomimetic architectures, which allow for the systematic investigation of various membrane related processes. Additionally, these systems have been proposed for biosensing applications. Tethered bilayer lipid membranes (tBLMS) are one type of solid supported membranes. The structure of the anchor lipid that tethers the membrane to the solid support has a significant impact on the membrane properties. Especially the sub-membrane part, which is defined by the spacer group, is important for the biological activity of incorporated membrane proteins. Various anchor lipids have been synthesised with different spacer and anchor groups. An increase of the spacer length led to a direct increase of the water reservoir beneath the membrane. However, this elongation also resulted in an amplified roughness of the monolayer and subsequently to diminished mechanical and electrical bilayer qualities. Additionally, a cholesterol-spacer had been designed to modulate the membrane fluidity. Model membrane systems with additional cholesterol-spacer or upper bilayer leaflets with additional cholesterol also exhibited an increased water reservoir with only slightly diminished mechanical and electrical abilities. Both parts show that tBLMs are very effective model systems that can be applied as biomimetic platforms to study for example lipid-protein interactions. They also enable the incorporation of ion channels and allow for potential biosensing application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane proteins play an indispensable role in physiological processes. It is, therefore, not surprising that many diseases are based on the malfunction of membrane proteins. Hence membrane proteins and especially G-protein coupled receptors(GPCRs)- the largest subfamily- have become an important drug target. Due to their high selectivity and sensitivity membrane proteins are also feasible for the detection of small quantities of substances with biosensors. Despite this widespread interest in GPCRs due to their importance as drug targets and biosensors there is still a lack of knowledge of structure, function and endogenous ligands for quiet a few of the previously identified receptors.rnBottlenecks in over-expression, purification, reconstitution and handling of membrane proteins arise due to their hydrophobic nature. Therefore the production of reasonable amounts of functional membrane proteins for structural and functional studies is still challenging. Also the limited stability of lipid based membrane systems hampers their application as platforms forrnscreening applications and biosensors.rnIn recent years the in vitro protein synthesis became a promising alternative to gain better yields for expression of membrane proteins in bio-mimetic membrane systems. These expression systems are based on cell extracts. Therefore cellular effects on protein expression are reduced. The open nature of the cell-free expression systems easily allows for the adjustment of reactionrnconditions for the protein of interest. The cell-free expression in the presence of bio-mimetic membrane systems allows the direct incorporation of the membrane proteins and therefore skips the time-consuming purification and reconstitution processes. Amphiphilic block-copolymers emerged as promising alternative for the less stable lipid-based membrane systems. They, likernlipids, form membraneous structures in aqueous solutions but exhibit increased mechanical and chemical stability.rnThe aim of this work was the generation of a GPCR-functionalised membrane system by combining both promising alternatives: in vitro synthesis and polymeric membrane systems. This novel platform should be feasible for the characterisation of the incorporated GPCR. Immunodetection of Dopamine receptor 1 and 2 expressed in diblock- and triblock-polymersomes demonstrated the successful in vitro expression of GPCRs in polymeric membranes. Antibodyrnbinding studies suggested a favoured orientation of dopamine receptors in triblockpolymersomes.rnA dopamine-replacement assay on DRD2-functionalised immobilised triblockpolymersomes confirmed functionality of the receptor in the polymersomes. The altered binding curve suggests an effect of the altered hydrophobic environment presented by the polymer membrane on protein activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine world is an immense source of biodiversity that provides substances with striking potentials in medicinal chemistry and biotechnology. Sponges (Porifera) are marine animals that represent the most impressive example of organisms possessing the ability to metabolise silica through a family of enzymes known as silicateins. Complex skeletal structures (spicules) made of pure biogenic silica (biosilica) are produced under physiological conditions. Biosilica is a natural material comprising inorganic and organic components with unique mechanical, optical, and physico-chemical properties, including promising potential to be used for development of therapeutic agents in regenerative medicine. Unravelling the intimate physiological mechanisms occurring in sponges during the construction of their siliceous spicules is an on-going project, and several questions have been addressed by the studies proposed by our working group. In this doctoral work, the recombinant DNA technology is exploited for functional and structural characterisation of silicatein. Its precursors are produced as fusion proteins with a chaperone tag (named TF-Ps), and a robust method for the overexpression of native soluble proteins in high concentrations has been developed. In addition, it is observed and proven experimentally that the maturation of silicatein is an autocatalytic event that: (i) can be modulated by rational use of protease inhibitors; (ii) is influenced by the temperature of the environment; (iii) only slightly depends on the pH. In the same experimental framework, observations on the dynamics in the maturation of silicateins allow a better understanding of how the axial filaments form during the early stages of spicule construction. In addition, the definition of new distinct properties of silicatein (termed “structure-guiding” and “structure-forming”) is introduced. By homology models and through comparisons with similar proteins (the cathepsins), domains with significant surface hydrophobicity are identified as potential self-assembly mediators. Moreover, a high-throughput screening showed that TF-Ps could generate crystals under certain conditions, becoming promising for further structural studies. With the goal of optimise the properties of the recombinant silicatein, implementation of new production systems are tried for the first time. Success in the expression of silicatein-type proteins in insect and yeast cells, constitute a promising basis for further development, towards the establishment of an efficient method for the production of a high-value pure and soluble protein.