5 resultados para Mathematical transformations
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
A study of maar-diatreme volcanoes has been perfomed by inversion of gravity and magnetic data. The geophysical inverse problem has been solved by means of the damped nonlinear least-squares method. To ensure stability and convergence of the solution of the inverse problem, a mathematical tool, consisting in data weighting and model scaling, has been worked out. Theoretical gravity and magnetic modeling of maar-diatreme volcanoes has been conducted in order to get information, which is used for a simple rough qualitative and/or quantitative interpretation. The information also serves as a priori information to design models for the inversion and/or to assist the interpretation of inversion results. The results of theoretical modeling have been used to roughly estimate the heights and the dip angles of the walls of eight Eifel maar-diatremes — each taken as a whole. Inversemodeling has been conducted for the Schönfeld Maar (magnetics) and the Hausten-Morswiesen Maar (gravity and magnetics). The geometrical parameters of these maars, as well as the density and magnetic properties of the rocks filling them, have been estimated. For a reliable interpretation of the inversion results, beside the knowledge from theoretical modeling, it was resorted to other tools such like field transformations and spectral analysis for complementary information. Geologic models, based on thesynthesis of the respective interpretation results, are presented for the two maars mentioned above. The results gave more insight into the genesis, physics and posteruptive development of the maar-diatreme volcanoes. A classification of the maar-diatreme volcanoes into three main types has been elaborated. Relatively high magnetic anomalies are indicative of scoria cones embeded within maar-diatremes if they are not caused by a strong remanent component of the magnetization. Smaller (weaker) secondary gravity and magnetic anomalies on the background of the main anomaly of a maar-diatreme — especially in the boundary areas — are indicative for subsidence processes, which probably occurred in the late sedimentation phase of the posteruptive development. Contrary to postulates referring to kimberlite pipes, there exists no generalized systematics between diameter and height nor between geophysical anomaly and the dimensions of the maar-diatreme volcanoes. Although both maar-diatreme volcanoes and kimberlite pipes are products of phreatomagmatism, they probably formed in different thermodynamic and hydrogeological environments. In the case of kimberlite pipes, large amounts of magma and groundwater, certainly supplied by deep and large reservoirs, interacted under high pressure and temperature conditions. This led to a long period phreatomagmatic process and hence to the formation of large structures. Concerning the maar-diatreme and tuff-ring-diatreme volcanoes, the phreatomagmatic process takes place due to an interaction between magma from small and shallow magma chambers (probably segregated magmas) and small amounts of near-surface groundwater under low pressure and temperature conditions. This leads to shorter time eruptions and consequently to structures of smaller size in comparison with kimberlite pipes. Nevertheless, the results show that the diameter to height ratio for 50% of the studied maar-diatremes is around 1, whereby the dip angle of the diatreme walls is similar to that of the kimberlite pipes and lies between 70 and 85°. Note that these numerical characteristics, especially the dip angle, hold for the maars the diatremes of which — estimated by modeling — have the shape of a truncated cone. This indicates that the diatreme can not be completely resolved by inversion.
Resumo:
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.
Resumo:
Eine zielgerichtete Steuerung und Durchführung von organischen Festkörperreaktionen wird unter anderem durch genaue Kenntnis von Packungseffekten ermöglicht. Im Rahmen dieser Arbeit konnte durch den kombinierten Einsatz von Einkristallröntgenanalyse und hochauf-lösender Festkörper-NMR an ausgewählten Beispielen ein tieferes Verständnis und Einblicke in die Reaktionsmechanismen von organischen Festkörperreaktionen auf molekularer Ebene gewonnen werden. So konnten bei der topotaktischen [2+2] Photodimerisierung von Zimt-säure Intermediate isoliert und strukturell charakterisiert werden. Insbesondere anhand statischer Deuteronen- und 13C-CPMAS NMR Spektren konnten eindeutig dynamische Wasserstoffbrücken nachgewiesen werden, die transient die Zentrosymmetrie des Reaktions-produkts aufheben. Ein weiterer Nachweis gelang daraufhin mittels Hochtemperatur-Röntgen-untersuchung, sodass der scheinbare Widerspruch von NMR- und Röntgenuntersuchungen gelöst werden konnte. Eine Veresterung der Zimtsäure entfernt diese Wasserstoffbrücken und erhält somit die Zentrosymmetrie des Photodimers. Weiterhin werden Ansätze zur Strukturkontrolle in Festkörpern basierend auf der molekularen Erkennung des Hydroxyl-Pyridin (OH-N) Heterosynthon in Co-Kristallen beschrieben, wobei vor allem die Stabilität des Synthons in Gegenwart funktioneller Gruppen mit Möglichkeit zu kompetetiver Wasserstoffbrückenbildung festgestellt wurde. Durch Erweiterung dieses Ansatzes wurde die molekulare Spezifität des Hydroxyl-Pyridin (OH-N) Heterosynthons bei gleichzeitiger Co-Kristallisation mit mehreren Komponenten erfolgreich aufgezeigt. Am Beispiel der Co-Kristallisation von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res) in Gegenwart von trans-1,2-bis(4-pyridyl)ethan (bpet) konnten Zwischenprodukte der Fest-körperreaktionen und neuartige Polymorphe isoliert werden, wobei eine lückenlose Aufklärung des Reaktionswegs mittels Röntgenanalyse gelang. Dabei zeigte sich, dass das Templat Resorcinol aus den Zielverbindungen entfernbar ist. Ferner gelang die Durchführung einer seltenen, nicht-idealen Einkristall-Einkristall-Umlagerung von trans--1,2-bis(4-pyridyl)ethylen (bpe) mit Resorcinol (res). In allen Fällen konnten die Fragen zur Struktur und Dynamik der untersuchten Verbindungen nur durch gemeinsame Nutzung von Röntgenanalyse und NMR-Spektroskopie bei vergleichbaren Temperaturen eindeutig und umfassend geklärt werden.
Resumo:
In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.
Resumo:
In dieser Arbeit wurde eine neue Methode zur asymmetrischen Substitution der K-Regionen von Pyren entwickelt, auf welcher das Design und die Synthese von neuartigen, Pyren-basierten funktionalen Materialien beruht. Eine Vielzahl von Substitutionsmustern konnte erfolgreich realisiert werden um die Eigenschaften entsprechend dem Verwendungszweck anzupassen. Der polyzyklische aromatische Kohlenwasserstoff (PAK) Pyren setzt sich aus vier Benzolringen in Form einer planaren Raute mit zwei gegenüberliegenden K-Regionen zusammen. Der synthetische Schlüsselschritt dieser Arbeit ist die chemische Transformation der einen K-Region zu einem α-Diketon und der darauffolgenden selektiven Bromierung der zweiten K-Region. Dieser asymmetrisch funktionalisierte Baustein zeichnet sich durch zwei funktionelle Gruppen mit orthogonaler Reaktivität aus und erweitert dadurch das Arsenal der etablierten Pyren Chemie um eine vielseitig einsetzbare Methode. Aufbauend auf diesem synthetischen Zugang wurden fünf wesentliche Konzepte auf dem Weg zu neuen, von Pyren abgeleiteten Materialen verfolgt: (i) Asymmterische Substitution mit elektronenziehenden versus -schiebenden Gruppen. (ii) Darstellung von Pyrenocyaninen durch Anbindung von Pyren mit einer der K-Regionen an das Phthalocyanin Gerüst zur Ausdehnung des π-Systems. (iii) Einführung von Thiophen an die K-Region um halbleitende Eigenschaften zu erhalten. (iv) Symmetrische Annullierung von PAKs wie Benzodithiophen und Phenanthren an beide K Regionen für cove-reiche und dadurch nicht-planare Strukturen. (v) Verwendung des K-Region-funktionalisierten Pyrens als Synthesebaustein für das Peri-Pentacen. Neben der Synthese wurde die Selbstorganisation in der Festphase und an der flüssig/fest Grenzfläche mittels zweidimensionaler Weitwinkel-Röntgenstreuung (2D WAXS) bzw. Rastertunnelmikroskopie (STM) untersucht. Die halbleitenden Eigenschaften wurden in organischen Feld-Effekt Transistoren (OFETs) charakterisiert.