7 resultados para METABOLITE CONCENTRATIONS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Zusammenfassung: Die Applikation des Mykotoxins Aflatoxin B1 (AFB1) führt in der Ratte zu Lebertumoren hepatozellulären Ursprungs, während bisher keine transformierende Wirkung dieses Mykotoxins auf Kupffer- und Endothelzellen (Nichtparenchymzellen, NPC) nachgewiesen werden konnte. Diese Resistenzmechanismen der NPC gegenüber AFB1 wurden im ersten Teil dieser Arbeit untersucht. AFB1 ist per se inaktiv, wird jedoch durch Verstoffwechselung in den chemisch reaktiven, an DNA bindenden Metaboliten AFB1-8,9-Epoxid überführt. Daneben stellt die enzymatische Hydroxylierung von AFB1 am Kohlenstoff-9a zum Aflatoxin M1 eine Detoxifizierung dar. Durch HPLC-Analyse der AFB1-Metabolite konnte gezeigt werden, daß in Nichtparenchymzellen (NPC) das Verhältnis von 9a-Hydroxylierung zu 8,9-Epoxidierung höher als in Parenchymzellen (PC) ist. Die AFB1-9a-hydroxylase fördert insbesondere in den NPC der Leber die Bildung des weniger gentoxischen Metaboliten AFM1 und konkurriert daher um die Aktivierung von AFB1 zum mutagenen und kanzerogenen 8,9-Epoxid. Dieser metabolische Unterschied scheint also einen Beitrag zur Resistenz der NPC der Leber gegenüber der hepatokanzerogenen Wirkung von AFB1 zu leisten. Da ein Synergismus zwischen der AFB1-Exposition und einer Infektion mit dem Hepatitis B-Virus (HBV) beim Menschen bezüglich des Auftretens von hepatozellulären Karzinomen zu bestehen scheint, wurde im zweiten Teil dieser Arbeit untersucht, ob die metabolische Aktivierung von AFB1 durch eine HBV-Infektion verstärkt wird. In einem Vergleich der Biotransformation von AFB1 mit mikrosomalen Leberfraktionen von transgenen HBV-Mäusen und Kontrollmäusen wurde keine signifikanten Unterschiede festgestellt. Dagegen wurde bei Virus-infizierten Waldmurmeltieren eine deutlich reduzierte Bildung des AFB1-8,9-Epoxids beobachtet. Es konnte z.T. ein Zusammenhang zwischen den verschiedenen Stadien der Leberschädigung und den Metabolismusraten festgestellt werden, wobei die metabolische Aktivierung mit zunehmender Leberschädigung abzunehmen scheint. Auch hinsichtlich der Aktivitäten verschiedener Cytochrom P450 abhängiger Monooxygenasen wurde eine weitgehende Übereinstimmung mit den durch HPLC ermittelten Metabolitenprofilen des AFB1 beobachtet. Diese Studien mit subzellulären Leberfraktion der transgenen HBV-Mäusen und der Waldmurmeltieren zeigen, daß die Interaktion zwischen Hepatitis und AFB1 nicht mit der verstärkten metabolischer Aktivierung von AFB1 zu erklären ist. TGF-ß1, aus der Gruppe der Cytokine, wird als Mediator bei Entzündungsprozessen in der Leber so z.B. im Verlauf einer Virushepatitis freigesetzt. Aufgrund der besonderen Bedeutung des murinen CYP2A5 (ortholog zum humanen CYP2A6) bei der Aktivierung von AFB1 wurde der Einfluß von TGF-ß1 auf CYP2A5 in Primärkulturen von Maushepatozyten untersucht. Durch Messung der Aktivität der Cumarin-7-hydroxylase sowie durch Bestimmung der Proteinmenge von CYP2A5 mittels Western Blotting konnte zunächst die Induzierbarkeit des CYP2A5-Isoenzyms durch Phenobarbital in kultivierten Hepatozyten der Maus gezeigt werden. Nur bei einer niedrigen TGF-ß1-Konzentration wurde eine leicht erhöhte Expression von CYP2A5 festgestellt, ansonsten führte die Behandlung der kultivierten Maushepatozyten mit TGF-ß1 zu einer dosisabhängigen Verminderung der Expression von CYP2A5.
Resumo:
Therapeutisches Drug Monitoring (TDM) wird zur individuellen Dosiseinstellung genutzt, um die Effizienz der Medikamentenwirkung zu steigern und das Auftreten von Nebenwirkungen zu senken. Für das TDM von Antipsychotika und Antidepressiva besteht allerdings das Problem, dass es mehr als 50 Medikamente gibt. Ein TDM-Labor muss dementsprechend über 50 verschiedene Wirkstoffe und zusätzlich aktive Metaboliten messen. Mit der Flüssigchromatographie (LC oder HPLC) ist die Analyse vieler unterschiedlicher Medikamente möglich. LC mit Säulenschaltung erlaubt eine Automatisierung. Dabei wird Blutserum oder -plasma mit oder ohne vorherige Proteinfällung auf eine Vorsäule aufgetragen. Nach Auswaschen von störenden Matrixbestandteilen werden die Medikamente auf einer nachgeschalteten analytischen Säule getrennt und über Ultraviolettspektroskopie (UV) oder Massenspektrometrie (MS) detektiert. Ziel dieser Arbeit war es, LC-Methoden zu entwickeln, die die Messung möglichst vieler Antipsychotika und Antidepressiva erlaubt und die für die TDM-Routine geeignet ist. Eine mit C8-modifiziertem Kieselgel gefüllte Säule (20 µm 10x4.0 mm I.D.) erwies sich in Vorexperimenten als optimal geeignet bezüglich Extraktionsverhalten, Regenerierbarkeit und Stabilität. Mit einer ersten HPLC-UV-Methode mit Säulenschaltung konnten 20 verschiedene Psychopharmaka einschließlich ihrer Metabolite, also insgesamt 30 verschiedene Substanzen quantitativ erfasst werden. Die Analysenzeit betrug 30 Minuten. Die Vorsäule erlaubte 150 Injektionen, die analytische Säule konnte mit mehr als 300 Plasmainjektionen belastet werden. Abhängig vom Analyten, musste allerdings das Injektionsvolumen, die Flussrate oder die Detektionswellenlänge verändert werden. Die Methode war daher für eine Routineanwendung nur eingeschränkt geeignet. Mit einer zweiten HPLC-UV-Methode konnten 43 verschiedene Antipsychotika und Antidepressiva inklusive Metaboliten nachgewiesen werden. Nach Vorreinigung über C8-Material (10 µm, 10x4 mm I.D.) erfolgte die Trennung auf Hypersil ODS (5 µm Partikelgröße) in der analytischen Säule (250x4.6 mm I.D.) mit 37.5% Acetonitril im analytischen Eluenten. Die optimale Flussrate war 1.5 ml/min und die Detektionswellenlänge 254 nm. In einer Einzelprobe, konnten mit dieser Methode 7 bis 8 unterschiedliche Substanzen gemessen werden. Für die Antipsychotika Clozapin, Olanzapin, Perazin, Quetiapin und Ziprasidon wurde die Methode validiert. Der Variationskoeffizient (VK%) für die Impräzision lag zwischen 0.2 und 6.1%. Im erforderlichen Messbereich war die Methode linear (Korrelationskoeffizienten, R2 zwischen 0.9765 und 0.9816). Die absolute und analytische Wiederfindung lagen zwischen 98 und 118 %. Die für das TDM erforderlichen unteren Nachweisgrenzen wurden erreicht. Für Olanzapin betrug sie 5 ng/ml. Die Methode wurde an Patienten für das TDM getestet. Sie erwies sich für das TDM als sehr gut geeignet. Nach retrospektiver Auswertung von Patientendaten konnte erstmalig ein möglicher therapeutischer Bereich für Quetiapin (40-170 ng/ml) und Ziprasidon (40-130 ng/ml) formuliert werden. Mit einem Massenspektrometer als Detektor war die Messung von acht Neuroleptika und ihren Metaboliten möglich. 12 Substanzen konnten in einem Lauf bestimmt werden: Amisulprid, Clozapin, N-Desmethylclozapin, Clozapin-N-oxid, Haloperidol, Risperidon, 9-Hydroxyrisperidon, Olanzapin, Perazin, N-Desmethylperazin, Quetiapin und Ziprasidon. Nach Vorreinigung mit C8-Material (20 µm 10x4.0 mm I.D.) erfolgte die Trennung auf Synergi MAX-RP C12 (4 µm 150 x 4.6 mm). Die Validierung der HPLC-MS-Methode belegten einen linearen Zusammenhang zwischen Konzentration und Detektorsignal (R2= 0,9974 bis 0.9999). Die Impräzision lag zwischen 0.84 bis 9.78%. Die für das TDM erforderlichen unteren Nachweisgrenzen wurden erreicht. Es gab keine Hinweise auf das Auftreten von Ion Suppression durch Matrixbestandteile. Die absolute und analytische Wiederfindung lag zwischen 89 und 107 %. Es zeigte sich, dass die HPLC-MS-Methode ohne Modifikation erweitert werden kann und anscheinend mehr als 30 verschiedene Psychopharmaka erfasst werden können. Mit den entwickelten flüssigchromatographischen Methoden stehen neue Verfahren für das TDM von Antipsychotika und Antidepressiva zur Verfügung, die es erlauben, mit einer Methode verschiedene Psychopharmaka und ihre aktiven Metabolite zu messen. Damit kann die Behandlung psychiatrischer Patienten insbesondere mit Antipsychotika verbessert werden.
Resumo:
Therapeutisches Drug Monitoring (TDM) ist eine Maßnahme, bei der durch Messung der Medikamentenspiegel im Blut die Dosis ermittelt wird, bei der mit höchster Wahrscheinlichkeit mit Therapieansprechen gerechnet werden kann. Dabei wird angenommen, dass die Konzentrationen im Blut mit denen im Wirkkompartiment korrelieren. Für Antipsychotika wurde gezeigt, dass die Konzentrationen im Blut direkt mit denen im Gehirn korrelieren, die Verteilung zwischen den beiden Kompartimenten ist jedoch für die verschiedenen Antipsychotika sehr unterschiedlich. Die Distribution von Arzneistoffen zwischen Blut und Gehirn wird durch Effluxtransporter in der Blut-Hirn-Schranke kontrolliert. Welche Rolle dabei P-Glykoprotein (P-gp) für die Verteilung von atypischen Antipsychotika spielt und wie die Pharmakokinetik und –dynamik durch diesen Transporter beeinflusst werden, sollte in dieser Arbeit untersucht werden. Für die Messung des neu eingeführten Antipsychotikums Aripiprazol, sowie für seinen aktiven Metaboliten Dehydroaripiprazol, wurde eine hochleistungsflüssigchromatographische (HPLC) Methode mit Säulenschaltung und spektrophotometrischer Detektion etabliert. Die Methode wurde für die Messung von Serumproben schizophrener Patienten eingesetzt, um einen therapeutischen Bereich für Aripiprazol zu ermitteln. Aus der Analyse von 523 Patientenproben wurde herausgefunden, dass Aripiprazol-Serumkonzentrationen von 150 bis 300 ng/ml mit gutem klinischen Ansprechen und einem geringen Risiko für Nebenwirkungen einhergingen. Weiterhin wurde festgestellt, dass die Serumspiegel bei gleichzeitiger Gabe von Inhibitoren und Induktoren der Cytochrom P450 (CYP) Isoenzyme CYP2D6 und CYP3A4 erhöht bzw. gesenkt wurden. Am Modell der P-gp Knockout Maus im Vergleich zu FVB Wildtyp Mäusen wurden Konzentrationsverläufe von Antipsychotika nach i.p. Gabe von Amisulprid, Aripiprazol, Dehydroaripiprazol, Clozapin, Desmethylclozapin, Haloperidol, Olanzapin, Quetiapin, Risperidon und 9-Hydroxyrisperidon sowie der Kontrollsubstanz Domperidon im Gehirn und Blut über 24 Stunden mittels HPLC-Methoden gemessen. Welchen Einfluss eine verminderte Expression von P-gp auf die Pharmakodynamik hat, wurde in zwei Verhaltenstests untersucht. Mit Hilfe des Rotarods wurden motorische Effekte der Arzneistoffe erfasst und mittels Radial Arm Water Maze kognitive Fähigkeiten. Risperidon und sein aktiver Metabolit 9-Hydroxyrisperidon waren die stärksten Substrate von P-gp. 10-fach höhere Konzentrationen im Gehirn der P-gp Knockout Mäuse führten zu 10-fach stärkeren Beeinträchtigungen in den pharmakodynamischen Untersuchungen im Vergleich zu Wildtyp Tieren. Amisulprid, Aripiprazol, Dehydroaripiprazol, Desmethylclozapin und Quetiapin konnten ebenfalls als Substrate von P-gp identifiziert werden. Olanzapin, Haloperidol und Clozapin wurden durch P-gp wenig bzw. nicht in ihrer Pharmakokinetik und –dynamik beeinflusst. Da P-gp von Nagern und Menschen nach derzeitiger Kenntnis in ihren Substrateigenschaften weitgehend übereinstimmen, muss bei einer Behandlung von schizophrenen Patienten mit Antipsychotika, die als Substrate von P-gp identifiziert wurden, davon ausgegangen werden, dass eine Veränderung der Expression oder Aktivität von P-gp, genetisch verursacht oder durch Medikamente bedingt, für das Therapieansprechen oder das Auftreten von Nebenwirkungen bedeutsam sind.
Resumo:
Eine neue auf einer Pyruvat abhängigen Biolumineszenzreaktion basierende Methode zur quantitativen Bestimmung und räumlichen Darstellung von Pyruvat in Gefrierschnitten von Gewebeproben wurde entwickelt. Dabei wurden biochemische Reaktionen so verknüpft, dass sichtbares Licht proportional zum eingesetzten Pyruvatgehalt entstand. Eine hoch signifikante positive Korrelation beider Parameter ermöglichte eine Kalibrierung mit definierten Pyruvatgehalten und damit die Quantifizierung in unbekannten Proben. Die Nachweisgrenze lag bei 0,04 pmol Pyruvat mit einer Auflösung von 0,02 µmol/g. Das Biolumineszenzverfahren wurde mit Hilfe anderer Methoden validiert, wobei eine Wiederfindung mit einer konzentrationsabhängigen Abweichung von ≤ 15 % erzielt wurde. Ein wesentlicher Vorteil der neuen Methode gegenüber bisherigen Verfahren zum Pyruvatnachweis liegt in der Messwerterfassung definierter histologischer Gewebsareale. Dies wird durch computergesteuerte Überlagerung von Metabolitverteilungen mit Schnittbildern aus Strukturfärbungen und interaktiver, „optischer Mikrodissektion“ der Gewebeschnitte möglich. Ein weiterer Nutzen der Methode ist deren optionale Kombination mit der Biolumineszenztechnik für andere Stoffwechselprodukte. So ermöglicht eine exakte Superposition zweier Metabolitbilder von unmittelbar aufeinander folgenden Gewebeschnitten eine korrelative Kolokalisationsanalyse beider Metabolite. Das Ergebnis lässt sich zum einen in Form von „Pixel-zu-Pixel“-Korrelationen dokumentieren, zum anderen kann für jeden Bildpunkt ein Laktat/Pyruvat-Verhältnis als Maß für den Redoxzustand des Gewebes berechnet und dargestellt werden. Hieraus ergeben sich z.B. räumliche L/P-Verteilungen (L/P-Karten). Ein solches „Redoximaging“ durch Kartierung des L/P-Quotienten ist bislang mit keinem anderen Verfahren möglich. Während die Entwicklung des Pyruvatnachweises eine Kernaufgabe der vorliegenden Arbeit darstellte, bestand ein weiterer wesentlicher Teil in der praktischen Anwendung der neuen Methode im Bereich der experimentellen Tumorforschung. So ergaben Messungen an acht verschiedenen Linien von humanen HNSCC-Xenotransplantaten (n = 70 Tumoren) einen mittleren Pyruvatgehalt von 1,24 ± 0,20 µmol/g. In sechs Humanbiopsien derselben Tumorentität wurde ein durchschnittlicher Pyruvatgehalt von 0,41 ± 0,09 µmol/g gemessen. Bei den Xenotransplantaten konnte eine signifikante positive Korrelation zwischen der Summe aus Laktat und Pyruvat bzw. dem L/P Verhältnis und der Strahlensensibilität gefunden werden, wobei das L/P-Verhältnis ebenso wie die Summe aus Laktat und Pyruvat maßgeblich von Laktat bestimmt wurden. Der Zusammenhang der Metabolite mit der Strahlensensibilität lässt sich durch deren antioxidative Eigenschaften erklären. Da der Redoxzustand der Zelle kritisch bezüglich der Effizienz von ROS induzierenden Therapieansätzen, wie z.B. Bestrahlung oder bestimmter Chemotherapeutika sein kann, könnte die Bestimmung des L/P Verhältnisses als prognostischer Faktor prädiktive Aussagen über die Sensibilität gegenüber solchen Behandlungen erlauben.
Resumo:
P-Glykoprotein (P-gp) ist ein ATP-verbrauchender Transporter, der in Organschranken exprimiert wird, um Fremdstoffe auszuschleusen, darunter auch Psychopharmaka. Im Rahmen dieser Arbeit wurde im Tiermodell der Maus untersucht, welche pharmakokinetischen und pharmakodynamischen Konsequenzen sich bei Verabreichung von Risperidon als P-gp Modellsubstrat ergeben, wenn die Expression von P-gp induziert wird. Als potenzielle Induktoren wurden Dexamethason, Rifampicin, Quercetin, 5-Pregnen-3ß-ol-20-on-16α-Carbonitril (PCN) und Acitretin geprüft. Es konnte gezeigt werden, dass alle Substanzen die Verteilung von Risperidon und seinem aktiven Metaboliten 9-Hydroxyrisperidon beeinflussten. Während sich für Quercetin und Acitretin leichte P-gp inhibitorische Eigenschaften ergaben, die an Hand von erhöhten Konzentrationen von Risperidon und 9-Hydroxyrisperidon gezeigt werden konnten, führten die bekannten P-gp Induktoren Rifampicin, Dexamethason und PCN zu verringerten Konzentrationen im Vergleich zur Kontrollgruppe. Durch Western Blot Untersuchungen wurde bestätigt, dass die Induktoren die P-gp Expression im Hirngewebe tendenziell steigerten. Dies sprach dafür, dass bei Verabreichung einer Komedikation, die P-gp induziert, mit einer veränderten Verteilung von P-gp Substraten zu rechnen ist. Darüber hinaus konnte nachgewiesen werden, dass durch eine Hemmung bzw. Induktion von P-gp nicht nur die Pharmakokinetik, sondern auch die Pharmakodynamik von Risperidon und 9-Hydroxyrisperidon verändert wird. Dies wurde durch verhaltenspharmakologische Untersuchungen gezeigt. Durch Risperidon induzierte motorische Effekte auf dem RotaRod waren nach Induktion von P-gp abgeschwächt. Dies zeigte sich auch für Haloperidol, welches kein Substrat ist. Da P-gp abhängige Effekte in diesem Fall keine bedeutende Rolle spielen, ist davon auszugehen, dass neben der Induktion von P-gp an der Blut-Hirn Schranke auch andere Mechanismen wie z.B. eine Induktion von Enzymen der CYP-Familie an den beobachteten Effekten beteiligt sind. Bei Untersuchungen von kognitiven Leistungen in der Barnes Maze konnte gezeigt werden, dass Haloperidol im Gegensatz zu Risperidon das Lernverhalten negativ beeinflussen kann. Eine P-gp Induktion schien jedoch keinen deutlichen Einfluss auf das Lernverhalten unter Antipsychotika-Gabe zu haben und sprach vielmehr für substanzabhängige Effekte der einzelnen Antipsychotika bzw. P-gp Modulatoren. Zusatzuntersuchungen zur Hirngängigkeit von Acitretin, einem synthetischen Retinoid, welches derzeit als potenzielles Antidementivum geprüft wird, konnten belegen, dass es die Blut-Hirn Schranke überwindet. Bereits 1h nach Injektion war Acitretin in hoher Konzentration im Gehirn nachweisbar. Durch die Analyse zur Verteilung von Acitretin in Hirngewebe und Serum von P-gp Wildtyp und P-gp doppel knockout Mäusen konnte belegt werden, dass Acitretin nicht P-gp abhängig transportiert wird. Die Daten insgesamt betrachtet, lassen den Schluss zu, dass durch Verabreichung von Medikamenten, die P-gp Modulatoren sind, bei Antipsychotika mit pharmakokinetischen Interaktionen zu rechnen ist, welche die Wirksamkeit der Medikamente einschränken können.
Resumo:
Altern geht mit einer Reihe physiologischer Veränderungen einher. Da in höherem Lebensalter überdurchschnittlich viele Arzneistoffe eingenommen werden und häufig mehrere Erkrankungen gleichzeitig vorliegen, können Auffälligkeiten in den Arzneimittelkonzentrationen im Blut nicht nur altersbedingt, sondern auch krankheitsbedingt oder durch Arzneimittelwechselwirkungen verursacht sein.rnrnDie vorliegende Arbeit untersucht die Fragestellung, ob der Arzneimittelmetabolismus bei Alterspatenten generell, oder nur bei Patienten mit Multimorbidität und –medikation verändert ist, und in welchem Lebensalter diese Veränderungen einsetzen. Im Mittelpunkt stand dabei die Frage, ob die Aktivitäten distinkter Arzneimittel-abbauender Enzyme der Cytochrom P450-Enzym-Familie (CYP) verändert sind. Da viele Psychopharmaka nur bei Patienten im Alter zwischen 18 und 65 Jahren zugelassen sind, wurde die Hypothese geprüft, dass sich Patienten im Alter über und unter 65 Jahren in ihren Medikamentenspiegeln unterscheiden.rnrnFür die Untersuchungen wurde eine Datenbank aus Blutspiegelmessungen erstellt, die im Rahmen des pharmakotherapiebegleitenden TDM erhoben worden waren. Die Blutspiegel stammten von insgesamt 4197 Patienten, die mit Amisulprid, Aripiprazol, Citalopram, Clozapin, Donepezil, Escitalopram, Mirtazapin, Quetiapin, Risperidon, Sertralin, Venlafaxin oder Ziprasidon behandelt wurden. Die Messungen wurden ergänzt mit Angaben aus den TDM-Anforderungsscheinen bezüglich Tagesdosis, Begleitmedikamenten, Schweregrad der Erkrankung, Therapieerfolg und Verträglichkeit der Medikation. Zusätzlich wurden klinische Befunde der Leber- und Nierenfunktion einbezogen, sowie Angaben zur Berechnung des BMI. Die in vivo-CYP-Enzymaktivitäten wurden anhand von metabolischen Ratios (Serumkonzentrationen Metabolit/ Serumkonzentration Muttersubstanz) beurteilt.rnrnIm Mittel stieg der Schweregrad der Erkrankung mit dem Alter und der Therapieerfolg verschlechterte sich. Dies betraf im Einzelnen nur Patienten, die mit Amisulprid oder Clozapin behandelt worden waren. Ältere Patienten litten häufiger an Nebenwirkungen als jüngere.rnUnter Aripiprazol, Quetiapin, Sertralin und Venlafaxin erreichten Alterspatienten mit niedrigeren Tagesdosen gleiche Therapieerfolge wie jüngere Patienten.rnPatienten, die mit Clozapin oder Amisulprid behandelt wurden, zeigten im Alter schlechtere Behandlungserfolge bei gleicher (Clozapin) bzw. niedrigerer (Amisulprid) Tagesdosis.rnTherapieerfolg und mittlere Tagesdosis änderten sich bei Patienten, die Ziprasidon, Donepezil, Citalopram, Escitalopram und Mirtazapin einnahmen, nicht altersabhängig.rnrnAltersabhängige Unterschiede der Serumspiegel zeigten sich für Amisulprid, Aripiprazol, Donepezil, Mirtazapin, Desmethylmirtazapin, Quetiapin und DesmethylsertralinrnAllerdings lagen die Altersgrenzen außer bei Donepezil deutlich niedriger als die gängig angenommene, nämlich bei 35 Jahren (Aripiprazol), 70 Jahren (Donepezil), 55 Jahren (D-Sertralin), 41 Jahren (Amisulprid), 49 Jahren (Quetiapin) und 58 Jahren (Mirtazapin).rnEs bestand kein Zusammenhang zwischen dem Auftreten veränderter Serumspiegel im Alter und dem Verteilungsvolumen, der Plasmaproteinbindung oder der Eliminationshalbwertszeit der untersuchten Wirkstoffe.rnrnBei Patienten ohne Comedikation fand sich in keinem Fall eine altersabhängige Veränderung der Ratio. Es ergab sich daher kein Hinweis auf eine Veränderung der CYP-Aktivität im Alter. Die Einnahme von Comedikation nahm mit dem Alter zu, hierfür ließ sich eine Altersgrenze von 49 Jahren definieren. Unter Polytherapie wurden Veränderungen der CYP-Aktivität beobachtet.rnrnDer Einfluss veränderter Leber- oder Nierenfunktion auf die Biotransformation von Pharmaka wurde anhand von Serumspiegeln von Patienten, die mit Donepezil, Venlafaxin, Citalopram oder Escitalopram behandelt wurden, untersucht. rnBei keinem Wirkstoff wurden unter auffälligen Leber- oder Nierenparametern signifikant veränderte Serumspiegel gemessen.rnEine Abhängigkeit der Serumspiegel vom Körpergewicht wurde nur für Desmethylsertralin gefunden. Die Spiegel waren bei Patienten mit einem Body Mass Index unter 20 signifikant höher als bei Patienten mit einem Index über 20. Aufgrund der kleinen Fallgruppe und der Tatsache, dass der Serumspiegel der Muttersubstanz nicht stieg, konnte nicht zwingend von einem Alterseinfluss aufgrund der veränderten Körperzusammensetzung ausgegangen werden.rnInsgesamt ergaben sich aus den Untersuchungen Hinweise auf moderate altersabhängige Veränderungen der Pharmakokinetik. Es ließen sich allerdings keine allgemeinen Dosierempfehlungen für Alterspatienten ableiten. Es zeigte sich jedoch, dass mit altersabhängigen Veränderungen der Pharmakokinetik bereits nach dem 50. Lebensjahr zu rechnen ist. Weitere Untersuchungen sollten auch den Alterseffekt auf gastrointestinale Transporter einbeziehen, die die aktive Aufnahme von Arzneistoffen ins Blut bewerkstelligen. Unklar ist auch die Rolle des Alterns auf die Aktivität des P-Glykoproteins. rn
Resumo:
In den letzten Jahren stieg in Deutschland der Gebrauch bzw. Missbrauch von Opioid-Analgetika zunehmend an. Das entwickelte Verfahren sollte unter Einbeziehung neuer Substanzen möglichst viele verschiedene Opioide und auch ihre pharmakologisch aktiven Stoffwechselprodukte berücksichtigen.rnVor Analyse wurden Blut-, Serum- oder Urinproben mit Phosphatpuffer versetzt und mittels Festphasenextraktion an C18-Säulenmaterial aufgearbeitet. Post-Mortem-Gewebematerial wurde mit isotonischer Kochsalzlösung versetzt, homogenisiert und anschließend durch eine Festphasenextraktion aufgereinigt. Haarproben wurden nach Zerkleinerung mit Methanol unter Ultrabeschallung extrahiert. Die Flüssigchromatographie gekoppelt mit Tandem-Massenspektrometrie (Elektrosprayionisation im positiven Modus) erwies sich als geeignetes Verfahren für die simultane Bestimmung der Opioide in biologischem Probenmaterial (Körperflüssigkeiten, Gewebe und Haaren). Der Multi-Analyt Assay erlaubt die quantitative Analyse von 35 verschiedenen Opioiden. Die Analyten wurden durch eine Phenyl-Hexyl Säule und einen Wasser/Acetonitril Gradienten durch eine UPLC 1290 Infinity gekoppelt mit einem 6490 Triple Quadrupol von Agilent Technologies separiert.rnDie LC/MS Methode zur simultanen Bestimmung von 35 Opioiden in Serum und Haaren wurde nach den Richtlinien der Gesellschaft für Toxikologische und Forensische Chemie (GTFCh) validiert. Im Fall der Serumvalidierung lagen die Nachweisgrenzen zwischen 0.02 und 0.6 ng/ml und die Bestimmungsgrenzen im Bereich von 0.1 bis 2.0 ng/ml. Die Kalibrationskurven waren für die Kalibrationslevel 1 bis 6 linear. Wiederfindungsraten lagen für alle Verbindungen zwischen 51 und 88 %, außer für Alfentanil, Bisnortiliidn, Pethidin und Morphin-3-Glucuronid. Der Matrixeffekt lag zwischen 86 % (Ethylmorphin) und 105 % (Desomorphin). Für fast alle Analyten konnten akzeptable Werte bei der Bestimmung der Genauigkeit und Richtigkeit nach den Richtlinien der GTFCh erhalten werden. Im Fall der Validierung der Haarproben lagen die Nachweisgrenzen zwischen 0.004 und 0.6 ng/Probe und die Bestimmungsgrenzen zwischen 0.1 ng/Probe und 2.0 ng/Probe. Für die Kalibrationslevel 1 bis 6 waren alle Kalibrationsgeraden linear. Die Wiederfindungsraten lagen für die Opioide im Bereich von 73.5 % (Morphin-6-Glucuronid) und 114.1 % (Hydrocodon). Die Werte für die Bestimmung der Richtigkeit lagen zwischen - 6.6 % (Methadon) und + 11.7 % (Pholcodin). Präzisionsdaten wurden zwischen 1.0 % für Dextromethorphan und 11.5 % für Methadon ermittelt. Die Kriterien der GTFCh konnten bei Ermittlung des Matrixeffekts für alle Substanzen erfüllt werden, außer für 6-Monoacetylmorphin, Bisnortilidin, Meperidin, Methadon, Morphin-3-glucuronid, Morphin-6-glucuronid, Normeperidin, Nortilidin und Tramadol.rnZum Test des Verfahrens an authentischem Probenmaterial wurden 206 Proben von Körperflüssigkeiten mit Hilfe der simultanen LC/MS Screening Methode untersucht. Über 150 Proben wurden im Rahmen von forensisch-toxikologischen Untersuchungen am Instituts für Rechtsmedizin Mainz analysiert. Dabei konnten 23 der 35 Opioide in den realen Proben nachgewiesen werden. Zur Untersuchung der Pharmakokinetik von Opioiden bei Patienten der anästhesiologischen Intensivstation mit Sepsis wurden über 50 Blutproben untersucht. Den Patienten wurde im Rahmen einer klinischen Studie einmal täglich vier Tage lang Blut abgenommen. In den Serumproben wurde hauptsächlich Sufentanil (0.2 – 0.8 ng/ml in 58 Fällen) und Piritramid (0.4 – 11 ng/ml in 56 Fällen) gefunden. Außerdem wurden die Proben von Körperflüssigkeiten und Gewebe von 13 verschiedenen Autopsiefällen mit Hilfe des Multi-Analyt Assays auf Opioide untersucht.rnIn einem zweiten Schritt wurde die Extraktions- und Messmethode zur Quantifizierung der 35 Opioide am Forensic Medicine Center in Ho Chi Minh City (Vietnam) etabliert. Insgesamt wurden 85 Herzblutproben von Obduktionsfällen mit Verdacht auf Opiatintoxikation näher untersucht. Der überwiegende Teil der untersuchten Fälle konnte auf eine Heroin- bzw. Morphin-Vergiftung zurückgeführt werden. Morphin wurde in 68 Fällen im Konzentrationsbereich 1.7 – 1400 ng/ml und der Heroinmetabolit 6-Monoactetylmorphin in 34 Fällen (0.3 – 160 ng/ml) nachgewiesen werden.rnSchließlich wurden noch 15 Haarproben von Patienten einer psychiatrischen Klinik, die illegale Rauschmittel konsumiert hatten, mit Hilfe der simultanen Opioid-LC/MS Screeningmethode gemessen. Die Ergebnisse der Untersuchung wurden mit früheren Auswertungen von gaschromatographischen Analysen verglichen. Es zeigte sich eine weitgehende Übereinstimmung der Untersuchungsergebnisse für die Opioide 6-Monoacetylmorphin, Morphin, Codein, Dihydrocodein und Methadon. Mit der LC/MS Methode konnten weitere Substanzen, wie zum Beispiel Bisnortilidin, Dextromethorphan und Tramadol in den Haarproben gefunden werden, die bislang nicht entdeckt worden waren.rn