3 resultados para Lower Bounds
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.
Resumo:
Das Basisproblem von Arc-Routing Problemen mit mehreren Fahrzeugen ist das Capacitated Arc-Routing Problem (CARP). Praktische Anwendungen des CARP sind z.B. in den Bereichen Müllabfuhr und Briefzustellung zu finden. Das Ziel ist es, einen kostenminimalen Tourenplan zu berechnen, bei dem alle erforderlichen Kanten bedient werden und gleichzeitig die Fahrzeugkapazität eingehalten wird. In der vorliegenden Arbeit wird ein Cut-First Branch-and-Price Second Verfahren entwickelt. In der ersten Phase werden Schnittebenen generiert, die dem Master Problem in der zweiten Phase hinzugefügt werden. Das Subproblem ist ein kürzeste Wege Problem mit Ressourcen und wird gelöst um neue Spalten für das Master Problem zu liefern. Ganzzahlige CARP Lösungen werden durch ein neues hierarchisches Branching-Schema garantiert. Umfassende Rechenstudien zeigen die Effektivität dieses Algorithmus. Kombinierte Standort- und Arc-Routing Probleme ermöglichen eine realistischere Modellierung von Zustellvarianten bei der Briefzustellung. In dieser Arbeit werden jeweils zwei mathematische Modelle für Park and Loop und Park and Loop with Curbline vorgestellt. Die Modelle für das jeweilige Problem unterscheiden sich darin, wie zulässige Transfer Routen modelliert werden. Während der erste Modelltyp Subtour-Eliminationsbedingungen verwendet, werden bei dem zweiten Modelltyp Flussvariablen und Flusserhaltungsbedingungen eingesetzt. Die Rechenstudie zeigt, dass ein MIP-Solver den zweiten Modelltyp oft in kürzerer Rechenzeit lösen kann oder bei Erreichen des Zeitlimits bessere Zielfunktionswerte liefert.
Resumo:
Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.