1 resultado para Low Speed.

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of the presented thesis is the accurate measurement of time dilation, aiming at a quantitative test of special relativity. By means of laser spectroscopy, the relativistic Doppler shifts of a clock transition in the metastable triplet spectrum of ^7Li^+ are simultaneously measured with and against the direction of motion of the ions. By employing saturation or optical double resonance spectroscopy, the Doppler broadening as caused by the ions' velocity distribution is eliminated. From these shifts both time dilation as well as the ion velocity can be extracted with high accuracy allowing for a test of the predictions of special relativity. A diode laser and a frequency-doubled titanium sapphire laser were set up for antiparallel and parallel excitation of the ions, respectively. To achieve a robust control of the laser frequencies required for the beam times, a redundant system of frequency standards consisting of a rubidium spectrometer, an iodine spectrometer, and a frequency comb was developed. At the experimental section of the ESR, an automated laser beam guiding system for exact control of polarisation, beam profile, and overlap with the ion beam, as well as a fluorescence detection system were built up. During the first experiments, the production, acceleration and lifetime of the metastable ions at the GSI heavy ion facility were investigated for the first time. The characterisation of the ion beam allowed for the first time to measure its velocity directly via the Doppler effect, which resulted in a new improved calibration of the electron cooler. In the following step the first sub-Doppler spectroscopy signals from an ion beam at 33.8 %c could be recorded. The unprecedented accuracy in such experiments allowed to derive a new upper bound for possible higher-order deviations from special relativity. Moreover future measurements with the experimental setup developed in this thesis have the potential to improve the sensitivity to low-order deviations by at least one order of magnitude compared to previous experiments; and will thus lead to a further contribution to the test of the standard model.