2 resultados para Local and regional procurement and distribution
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.
Resumo:
From historical accounts it is well-known that the coasts of the Gulfs of Lakonia and Argolis (southern and eastern Peloponnese, Greece) have been repeatedly affected by tsunamis during historical times. It is assumed that these palaeotsunamis left sedimentological and geomorphological traces in the geological record which are still detectable these days. As both gulfs are located within one of the seismically most active regions in whole western Eurasia in particular the nearby Hellenic Trench is regarded as the main trigger for tsunami generation. Against this background, selected near-coast sedimentary archives were studied by means of sedimentological, geomorphological, geophysical, geochemical and microfaunal investigations in order to detect signatures of Holocene palaeotsunamigenic activity. The investigations revealed allochthonous sediment layers featuring distinctive sedimentary characteristics of marine high-energy event deposits in most of the investigated study areas. In order to differentiate between the geomorphodynamic driving mechanisms for the deposition of the associated marine high-energy event layers, a multi-method approach was used. The detected high-energy marine deposits are suggested to be of tsunamigenic origin. Radiocarbon dating results allowed establishing local event geo-chronostratigraphies and correlations on a local and regional scale as well as correlations with already described palaeotsunami findings on a supra-regional scale. The geochronological dataset attests repeated tsunamigenic activity at least since the 5th millennium BC up to the 17th century AD. For the studied areas in southeastern Lakonia up to four palaeotsunami event generations were identified, for central Lakonia three and for the investigated areas around the Argolis Gulf also up to four. Comparing the findings with literature data, chronological correlations were found with palaeotsunami deposits detected in near-coast geological archives of Akarnania, of the southwestern, the western and northwestern Peloponnese, with event deposits found on Crete and on the Ionian Islands of Cefalonia and Lefkada as well as with findings from southeastern Sicily (Italy) and Cesarea (Israel). By the identification of multiple palaeotsunami event layers, disturbing autochthonous near-coast sedimentary records of the Gulfs of Lakonia and Argolis during the last seven millennia, a significant tsunami frequency is attested for these regions.