5 resultados para Li-rich layered transition metal oxides (LLOs), XANES, EXAFS, charge compensation mechanism

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird ein prochirales, aus natürlichen Resourcen gewonnenes Azulen, das Guajazulen genutzt, um neuartige chirale Cyclopentadienyl-Systeme aufzubauen. Mit Alkalimetallhypersilaniden als starke und sperrige Nukleophile gelingt es hypersilylsubstituierte Gujazulenide zu synthetisieren. Diese wurden mittels Elementaranalyse, NMR-Spektroskopie und Röntgendiffraktometrie charakterisiert. Durch nachfolgende Metathesen mit Übergangsmetallhalogeniden konnten in vielen Fällen die entsprechenden Metallocene erhalten werden. Die Experimente enthüllen eine ausgeprägte Regioselektivität der Addition des sperrigen Hypersilyanions an das Guajazulen, die durch das eingesetzte Lösungsmittel graduell verändert werden kann. In nicht-koordinierenden Lösungsmitteln findet man ausschließlich eine Addition an der 6-Position, die 6-Hypersilyl-2,6-dihydroguajazulenide (6-Hyp-Hgual) (M=Li 1, K 2, Cs 4) in ausgezeichneten Ausbeuten liefert. In polaren Solventien erhält man hingegen Mischungen der 6- und 8-Regioisomeren: 2 bzw. (8-Hyp-Hgual) (3). 2 bleibt aber hierbei das Hauptprodukt. Röntgenbeugungsexperimente zeigen, dass 1 im Kristall als dimerer Sandwich-Komplex, meso-[Li2(6-Hyp-Hgual)2], und die THF-Solvate (thf)4K(6-Hyp-Hgual) (2a) sowie (thf)4K(8-Hyp-Hgual) (3a) jeweils als Halb-Sandwich-Komplexe in einer racemischen Mischung vorliegen. Die Verbindungen 1, 2, 3 and 4 eignen sich sehr gut dazu, in Metathesereaktionen als Precursor für neuartige chirale Metallozen-Komplexe eingesetzt zu werden. Insbesondere das Kaliumderivat 2 besticht durch die einfache und relativ preiswerte Synthese, die erzielten hohen Ausbeuten (>80%) und seine leichte Handhabbarkeit. In THF als Solvent wurden die Metallocene 5:5-M’(6-Hyp-Hgual)2 (M’ = Mn 5, Fe 6, Ni 8) und 5:5-Fe(8-Hyp-Hgual)2 (7) erhalten. Bei Verwendung einiger redox-aktiver Metallhalogenide beobachtet man jedoch die Zersetzung der Metallocene unter Bildung des oxidativen Kopplungsproduktes (3-Hyp-6-Hgual)2 (9) sowie der Ausscheidung von Metall. Die Umsetzung von Halogeniden der Gruppe 4 (TiCl3 and M’’Cl4 (M’’ = Ti, Zr, Hf)) mit 2 liefert in THF ausschließlich die Metallozendichloride M’’(6-Hyp-Hgual)2Cl2 (M’’ = Ti (10), Zr (11), Hf (12)). Die erhaltenen Metallozenderivate fallen als Diastereomeren-Gemische an, die sich durch fraktionierende Kristallisation teilweise oder vollständig in ihre Bestandteile, das jeweilige R,R-Racemat und das R,S-meso-Diastereomer auftrennen lassen. Die Strukturen der rac-Diastereomere konnten durch Beugungsexperimente aufgeklärt werden. Durch eine Metathese von 2 mit Hyp-Cl kann eine zweite Hypersilylgruppe in die 2-Position des Guajazulen-Gerüstes eingeführt werden. Das entstehende 2,6-bis(Hyp)-H2gua (14) kann anschließend mit nBuLi in das extrem luft- und feuchtigkeitsempfindliche Li[2,6-bis(Hyp)-Hgual] (15) überführt werden, dass wie 1 eine dimere Sandwich-Struktur aufweist. Durch Einführung des zweiten Hypersilylrestes werden die chemischen Eigenschaften des Azulenids dramatisch verändert. Während Verbindung 1 sich als guter Precursor für Metallocene erwies, gelang es uns bislang nicht, entsprechende Derivate der Verbindung 15 zu isolieren.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a strategy to prepare metal oxides including binary oxide and mixed metal oxide (MMO) in form of nanometer-sized particles using polymer as precursor. Zinc oxide nanoparticles are prepared as an example. The obtained zinc polyacrylate precursor is amorphous as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The conversion from polymer precursor to ZnO nanocrystals by thermal pyrolysis was investigated by means of XRD, thermogravimetric analysis (TGA) and electron microscopy. The as-synthesized ZnO consists of many individual particles with a diameter around 40 nm as shown by scanning electron microscopy (SEM). The photoluminescence (PL) and electron paramagnetic (EPR) properties of the material are investigated, too. Employing this method, ZnO nanocrystalline films are fabricated via pyrolysis of a zinc polyacrylate precursor film on solid substrate like silicon and quartz glass. The results of XRD, absorption spectra as well as TEM prove that both the ZnO nanopowder and film undergo same evolution process. Comparing the PL properties of films fabricated in different gas atmosphere, it is assigned that the blue emission of the ZnO films is due to crystal defect of zinc vacancy and green emission from oxygen vacancy. Two kinds of ZnO-based mixed metal oxide (Zn1-xMgxO and Zn1-xCoxO) particles with very precise stoichiometry are prepared by controlled pyrolysis of the corresponding polymer precursor at 550 oC. The MMO crystal particles are typically 20-50 nm in diameter. Doping of Mg in ZnO lattice causes shrinkage of lattice parameter c, while it remains unchanged with Co incorporation. Effects of bandgap engineering are seen in the Mg:ZnO system. The photoluminescence in the visible is enhanced by incorporation of magnesium on zinc lattice sites, while the emission is suppressed in the Co:ZnO system. Magnetic property of cobalt doped-ZnO is checked too and ferromagnetic ordering was not found in our samples. An alternative way to prepare zinc oxide nanoparticles is presented upon calcination of zinc-loaded polymer precursors, which is synthesized via inverse miniemulsion polymerization of the mixture of the acrylic acid and zinc nitrate. The as-prepared ZnO product is compared with that obtained from polymer-salt complex method. The obtained ZnO nanoparticles undergo surface modification via a phosphate modifier applying ultrasonication. The morphology of the modified particles is checked by SEM. And stability of the ZnO nanoparticles in aqueous dispersion is enhanced as indicated by the zeta-potential results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we present the adaptation and optimization of (i) the solvothermal and (ii) the metal-organic chemical vapor deposition (MOCVD) approach as simple methods for the high-yield synthesis of MQ2 (M=Mo, W, Zr; Q = O, S) nanoparticles. Extensive characterization was carried out using X-ray diffraction (XRD), scanning and transmission electron micros¬copy (SEM/TEM) combined with energy dispersive X-ray analysis (EDXA), Raman spectroscopy, thermal analyses (DTA/TG), small angle X-ray scattering (SAXS) and BET measurements. After a general introduction to the state of the art, a simple route to nanostructured MoS2 based on the decomposition of the cluster-based precursor (NH4)2Mo3S13∙xH2O under solvothermal conditions (toluene, 653 K) is presented. Solvothermal decomposition results in nanostructured material that is distinct from the material obtained by decomposition of the same precursor in sealed quartz tubes at the same temperature. When carried out in the presence of the surfactant cetyltrimethyl¬ammonium bromide (CTAB), the decomposition product exhibits highly disordered MoS2 lamellae with high surface areas. The synthesis of WS2 onion-like nanoparticles by means of a single-step MOCVD process is discussed. Furthermore, the results of the successful transfer of the two-step MO¬CVD based synthesis of MoQ2 nanoparticles (Q = S, Se), comprising the formation of amorphous precursor particles and followed by the formation of fullerene-like particles in a subsequent annealing step to the W-S system, are presented. Based on a study of the temperature dependence of the reactions a set of conditions for the formation of onion-like structures in a one-step reaction could be derived. The MOCVD approach allows a selective synthesis of open and filled fullerene-like chalcogenide nanoparticles. An in situ heating stage transmission electron microscopy (TEM) study was employed to comparatively investigate the growth mechanism of MoS2 and WS2 nanoparticles obtained from MOCVD upon annealing. Round, mainly amorphous particles in the pristine sample trans¬form to hollow onion-like particles upon annealing. A significant difference between both compounds could be demonstrated in their crystallization conduct. Finally, the results of the in situ hea¬ting experiments are compared to those obtained from an ex situ annealing process under Ar. Eventually, a low temperature synthesis of monodisperse ZrO2 nanoparticles with diameters of ~ 8 nm is introduced. Whereas the solvent could be omitted, the synthesis in an autoclave is crucial for gaining nano-sized (n) ZrO2 by thermal decomposition of Zr(C2O4)2. The n-ZrO2 particles exhibits high specific surface areas (up to 385 m2/g) which make them promising candidates as catalysts and catalyst supports. Co-existence of m- and t-ZrO2 nano-particles of 6-9 nm in diameter, i.e. above the critical particle size of 6 nm, demonstrates that the particle size is not the only factor for stabilization of the t-ZrO2 modification at room temperature. In conclusion, synthesis within an autoclave (with and without solvent) and the MOCVD process could be successfully adapted to the synthesis of MoS2, WS2 and ZrO2 nanoparticles. A comparative in situ heating stage TEM study elucidated the growth mechanism of MoS2 and WS2 fullerene-like particles. As the general processes are similar, a transfer of this synthesis approach to other layered transition metal chalcogenide systems is to be expected. Application of the obtained nanomaterials as lubricants (MoS2, WS2) or as dental filling materials (ZrO2) is currently under investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate aerosol plays an important but uncertain role in cloud formation and radiative forcing of the climate, and is also important for acid deposition and human health. The oxidation of SO2 to sulfate is a key reaction in determining the impact of sulfate in the environment through its effect on aerosol size distribution and composition. This thesis presents a laboratory investigation of sulfur isotope fractionation during SO2 oxidation by the most important gas-phase and heterogeneous pathways occurring in the atmosphere. The fractionation factors are then used to examine the role of sulfate formation in cloud processing of aerosol particles during the HCCT campaign in Thuringia, central Germany. The fractionation factor for the oxidation of SO2 by ·OH radicals was measured by reacting SO2 gas, with a known initial isotopic composition, with ·OH radicals generated from the photolysis of water at -25, 0, 19 and 40°C (Chapter 2). The product sulfate and the residual SO2 were collected as BaSO4 and the sulfur isotopic compositions measured with the Cameca NanoSIMS 50. The measured fractionation factor for 34S/32S during gas phase oxidation is αOH = (1.0089 ± 0.0007) − ((4 ± 5) × 10−5 )T (°C). Fractionation during oxidation by major aqueous pathways was measured by bubbling the SO2 gas through a solution of H2 O2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to reduce the costs of crystalline silicon solar cells, low-cost silicon materials like upgraded metallurgical grade (UMG) silicon are investigated for the application in the photovoltaic (PV) industry. Conventional high-purity silicon is made by cost-intensive methods, based on the so-called Siemens process, which uses the reaction to form chlorosilanes and subsequent several distillation steps before the deposition of high-purity silicon on slim high-purity silicon rods. UMG silicon in contrast is gained from metallurgical silicon by a rather inexpensive physicochemical purification (e.g., acid leaching and/or segregation). However, this type of silicon usually contains much higher concentrations of impurities, especially 3d transition metals like Ti, Fe, and Cu. These metals are extremely detrimental in the electrically active part of silicon solar cells, as they form recombination centers for charge carriers in the silicon band gap. This is why simple purification techniques like gettering, which can be applied between or during solar cell process steps, will play an important role for such low-cost silicon materials. Gettering in general describes a process, whereby impurities are moved to a place or turned into a state, where they are less detrimental to the solar cell. Hydrogen chloride (HCl) gas gettering in particular is a promising simple and cheap gettering technique, which is based on the reaction of HCl gas with transition metals to form volatile metal chloride species at high temperatures.rnThe aim of this thesis was to find the optimum process parameters for HCl gas gettering of 3d transition metals in low-cost silicon to improve the cell efficiency of solar cells for two different cell concepts, the standard wafer cell concept and the epitaxial wafer equivalent (EpiWE) cell concept. Whereas the former is based on a wafer which is the electrically active part of the solar cell, the latter uses an electrically inactive low-cost silicon substrate with an active layer of epitaxially grown silicon on top. Low-cost silicon materials with different impurity grades were used for HCl gas gettering experiments with the variation of process parameters like the temperature, the gettering time, and the HCl gas concentration. Subsequently, the multicrystalline silicon neighboring wafers with and without gettering were compared by element analysis techniques like neutron activation analysis (NAA). It was demonstrated that HCl gas gettering is an effective purification technique for silicon wafers, which is able to reduce some 3d transition metal concentrations by over 90%. Solar cells were processed for both concepts which could demonstrate a significant increase of the solar cell efficiency by HCl gas gettering. The efficiency of EpiWE cells could be increased by HCl gas gettering by approximately 25% relative to cells without gettering. First process simulations were performed based on a simple model for HCl gas gettering processes, which could be used to make qualitative predictions.