1 resultado para LaGrange Collegiate Institute
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Filtro por publicador
- JISC Information Environment Repository (5)
- Rhode Island School of Design (5)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Applied Math and Science Education Repository - Washington - USA (8)
- Aquatic Commons (66)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (37)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biodiversity Heritage Library, United States (9)
- Blue Tiger Commons - Lincoln University - USA (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (75)
- Brock University, Canada (15)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- CentAUR: Central Archive University of Reading - UK (9)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (31)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (94)
- Cornell: DigitalCommons@ILR (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (12)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (11)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (9)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (8)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (29)
- Queensland University of Technology - ePrints Archive (22)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (42)
- South Carolina State Documents Depository (5)
- Universidad Politécnica de Madrid (7)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Michigan (369)
- University of Southampton, United Kingdom (6)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
In dieser Arbeit wird eine Deformationstheorie fürLagrange-Singularitäten entwickelt. Wir definieren einen Komplex von Moduln mit nicht-linearem Differential, densogenannten Lagrange-de Rham-Komplex, dessen ersteKohomologie isomorph zum Raum der infinitesimalenLagrange-Deformationen ist. Wir beschreiben die Beziehung diesesKomplexes zur Theorie der Moduln über dem Ring vonDifferentieloperatoren. Informationen zur Obstruktionstheorie vonLagrange-Deformationen werden aus derzweiten Kohomologie des Lagrange-de Rham-Komplexes gewonnen.Wir zeigen, dass unter einer geometrischen Bedingung an dieSingularität ie Kohomologie von des Lagrange-deRham-Komplexes ausendlich dimensionalen Vektorräumen besteht. Desweiteren wirdeine Methode zur effektiven Berechnung dieser Kohomologie fürquasi-homogene Lagrange-Flächensingularitäten entwickelt. UnterZuhilfenahme von Computeralgebra wird diese Methode für konkreteBeispiele angewendet.