3 resultados para Julia set

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Beziehung zwischen genetischem Polymorphismus von Populationen und Umweltvariabilität: Anwendung der Fitness-Set Theorie Das Quantitative Fitness-Set Modell (QFM) ist eine Erweiterung der Fitness-Set Theorie. Das QFM kann Abstufungen zwischen grob- und feinkörnigen regelmäßigen Schwankungen zweier Umwelten darstellen. Umwelt- und artspezifische Parameter, sowie die bewirkte Körnigkeit, sind quantifizierbar. Experimentelle Daten lassen sich analysieren und das QFM erweist sich in großen Populationen als sehr genau, was durch den diskreten Parameterraum unterstützt wird. Kleine Populationen und/oder hohe genetische Diversität führen zu Schätzungsungenauigkeiten, die auch in natürlichen Populationen zu erwarten sind. Ein populationsgrößenabhängiger Unschärfewert erweitert die Punktschätzung eines Parametersatzes zur Intervallschätzung. Diese Intervalle wirken in finiten Populationen als Fitnessbänder. Daraus ergibt sich die Hypothese, dass bei Arten, die in dichten kontinuierlichen Fitnessbändern leben, Generalisten und in diskreten Fitnessbändern Spezialisten evolvieren.Asynchrone Reproduktionsstrategien führen zur Bewahrung genetischer Diversität. Aus dem Wechsel von grobkörniger zu feinkörniger Umweltvariation ergibt sich eine Bevorzugung der spezialisierten Genotypen. Aus diesem Angriffspunkt für disruptive Selektion lässt sich die Hypothese Artbildung in Übergangsszenarien von grobkörniger zu feinkörniger Umweltvariation formulieren. Im umgekehrten Fall ist Diversitätsverlust und stabilisierende Selektion zu erwarten Dies ist somit eine prozessorientierte Erklärung für den Artenreichtum der (feinkörnigen) Tropen im Vergleich zu den artenärmeren, jahreszeitlichen Schwankungen unterworfenen (grobkörnigen) temperaten Zonen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neugeborene begegnen nach der Geburt einer Vielzahl von Mikroorganismen, wie Bakterien und Pilzen, wodurch nach und nach eine Besiedelung ihrer Haut und Schleimhäute stattfindet. In diesem Kontext muss jedoch verhindert werden, dass es zu schädliche Überreaktionen gegen die neuen Antigenen kommt. Die in der Kindheit erhöhte Infektionsanfälligkeit stellt somit eine essentielle Adaptation des neonatalen Immunsystems an die Herausforderungen der ersten Lebensphase dar. Dennoch wird das neonatale Immunsystem häufig als unreif bezeichnet, da insbesondere Th1-Antworten weniger stark ausfallen, als bei Erwachsenen. Während bekanntermaßen bei neonatalen DCs ein Defekt in der Produktion von IL-12 vorliegt, wird das ebenfalls als Th1-Zytokin geltende IL-27 von neonatalen DCs verstärkt gebildet, und dies bereits im unstimulierten Zustand der Zellen. rnDas Ziel der vorliegenden Arbeit war die Untersuchung des Einflusses von IL-27 auf die Kapazität der DCs, angeborene und adaptive Immunantworten zu modulieren. Da DCs den Rezeptor für IL-27 auch auf ihrer eigenen Oberfläche tragen, lag der Schwerpunkt der Untersuchungen auf den primären und sekundären autokrinen Wirkungen des IL-27. Hierbei wurde beobachtet, dass im Vergleich zu adulten DCs bei neonatalen DCs stärkere durch IL-27 ausgelöste autokrine Effekte auftraten. Die primäre autokrine Wirkung zeigte sich darin, dass IL-27 seine eigene Produktion, sowohl auf der Transkriptions- als auch auf der Proteinebene, anregte. Auf Proteinebene fielen diese Effekte bei Neonaten stärker aus, als bei Adulten.rnDarüber hinaus konnten, insbesondere bei neonatalen DCs, sekundäre autokrine Effekte von IL-27 bezüglich der Expression proinflammatorischer Zytokine, Chemokine, kostimulatorischer Moleküle und antiviraler Gene nachgewiesen werden. rnNeonatale DCs sind demnach nicht nur dazu in der Lage, größere Mengen an IL-27 zu bilden, sie können auch in vielfältiger Weise auf das Zytokin reagieren, was eine zentrale Rolle von IL-27 im Immungeschehen Neugeborener verdeutlicht. rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Erdatmosphäre besteht hauptsächlich aus Stickstoff (78%), Sauerstoff (21%) und Edelga¬sen. Obwohl Partikel weniger als 0,1% ausmachen, spielen sie eine entscheidende Rolle in der Chemie und Physik der Atmosphäre, da sie das Klima der Erde sowohl direkt als auch indirekt beeinflussen. Je nach Art der Bildung unterscheidet man zwischen primären und sekundären Partikeln, wobei primäre Partikel direkt in die Atmosphäre eingetragen werden. Sekundäre Partikel hingegen entstehen durch Kondensation von schwerflüchtigen Verbindungen aus der Gasphase, welche durch Reaktionen von gasförmigen Vorläufersubstanzen (volatile organic compounds, VOCs) mit atmosphärischen Oxidantien wie Ozon oder OH-Radikalen gebildet werden. Da die meisten Vorläufersubstanzen organischer Natur sind, wird das daraus gebil¬dete Aerosol als sekundäres organisches Aerosol (SOA) bezeichnet. Anders als die meisten primären Partikel stammen die VOCs überwiegend aus biogenen Quellen. Es handelt sich da¬bei um ungesättigte Kohlenwasserstoffe, die bei intensiver Sonneneinstrahlung und hohen Temperaturen von Pflanzen emittiert werden. Viele der leichtflüchtigen Vorläufersubstanzen sind chiral, sowohl die Vorläufer als auch die daraus gebildeten Partikel werden aber in den meisten Studien als eine Verbindung betrachtet und gemeinsam analysiert. Die mit Modellen berechneten SOA-Konzentrationen, welche auf dieser traditionellen Vorstellung der SOA-Bil¬dung beruhen, liegen deutlich unterhalb der in der Atmosphäre gefundenen, so dass neben diesem Bildungsweg auch noch andere SOA-Bildungsarten existieren müssen. Aus diesem Grund wird der Fokus der heutigen Forschung vermehrt auf die heterogene Chemie in der Partikelphase gerichtet. Glyoxal als Modellsubstanz kommt hierbei eine wichtige Rolle zu. Es handelt sich bei dieser Verbindung um ein Molekül mit einem hohen Dampfdruck, das auf Grund dieser Eigenschaft nur in der Gasphase zu finden sein sollte. Da es aber über zwei Alde¬hydgruppen verfügt, ist es sehr gut wasserlöslich und kann dadurch in die Partikelphase über¬gehen, wo es heterogenen chemischen Prozessen unterliegt. Unter anderem werden in An¬wesenheit von Ammoniumionen Imidazole gebildet, welche wegen der beiden Stickstoff-He¬teroatome lichtabsorbierende Eigenschaften besitzen. Die Verteilung von Glyoxal zwischen der Gas- und der Partikelphase wird durch das Henrysche Gesetz beschrieben, wobei die Gleichgewichtskonstante die sogenannte Henry-Konstante ist. Diese ist abhängig von der un¬tersuchten organischen Verbindung und den im Partikel vorhandenen anorganischen Salzen. Für die Untersuchung chiraler Verbindungen im SOA wurde zunächst eine Filterextraktions¬methode entwickelt und die erhaltenen Proben anschließend mittels chiraler Hochleistungs-Flüssigchromatographie, welche an ein Elektrospray-Massenspektrometer gekoppelt war, analysiert. Der Fokus lag hierbei auf dem am häufigsten emittierten Monoterpen α-Pinen und seinem Hauptprodukt, der Pinsäure. Da bei der Ozonolyse des α-Pinens das cyclische Grund¬gerüst erhalten bleibt, können trotz der beiden im Molekül vorhanden chiralen Zentren nur zwei Pinsäure Enantiomere gebildet werden. Als Extraktionsmittel wurde eine Mischung aus Methanol/Wasser 9/1 gewählt, mit welcher Extraktionseffizienzen von 65% für Pinsäure Enan¬tiomer 1 und 68% für Pinsäure Enantiomer 2 erreicht werden konnten. Des Weiteren wurden Experimente in einer Atmosphärensimulationskammer durchgeführt, um die Produkte der α-Pinen Ozonolyse eindeutig zu charakterisieren. Enantiomer 1 wurde demnach aus (+)-α-Pinen gebildet und Enantiomer 2 entstand aus (-)-α-Pinen. Auf Filterproben aus dem brasilianischen Regenwald konnte ausschließlich Pinsäure Enantiomer 2 gefunden werden. Enantiomer 1 lag dauerhaft unterhalb der Nachweisgrenze von 18,27 ng/mL. Im borealen Nadelwald war das Verhältnis umgekehrt und Pinsäure Enantiomer 1 überwog vor Pinsäure Enantiomer 2. Das Verhältnis betrug 56% Enantiomer 1 zu 44% Enantiomer 2. Saisonale Verläufe im tropischen Regenwald zeigten, dass die Konzentrationen zur Trockenzeit im August höher waren als wäh¬rend der Regenzeit im Februar. Auch im borealen Nadelwald wurden im Sommer höhere Kon¬zentrationen gemessen als im Winter. Die Verhältnisse der Enantiomere änderten sich nicht im jahreszeitlichen Verlauf. Die Bestimmung der Henry-Konstanten von Glyoxal bei verschiedenen Saataerosolen, nämlich Ammoniumsulfat, Natriumnitrat, Kaliumsulfat, Natriumchlorid und Ammoniumnitrat sowie die irreversible Produktbildung aus Glyoxal in Anwesenheit von Ammoniak waren Forschungs¬gegenstand einer Atmosphärensimulationskammer-Kampagne am Paul-Scherrer-Institut in Villigen, Schweiz. Hierzu wurde zunächst das zu untersuchende Saataerosol in der Kammer vorgelegt und dann aus photochemisch erzeugten OH-Radikalen und Acetylen Glyoxal er¬zeugt. Für die Bestimmung der Glyoxalkonzentration im Kammeraerosol wurde zunächst eine beste¬hende Filterextraktionsmethode modifiziert und die Analyse mittels hochauflösender Mas¬senspektrometrie realisiert. Als Extraktionsmittel kam 100% Acetonitril, ACN zum Einsatz wo¬bei die Extraktionseffizienz bei 85% lag. Für die anschließende Derivatisierung wurde 2,4-Di¬nitrophenylhydrazin, DNPH verwendet. Dieses musste zuvor drei Mal mittels Festphasenex¬traktion gereinigt werden um störende Blindwerte ausreichend zu minimieren. Die gefunde¬nen Henry-Konstanten für Ammoniumsulfat als Saataerosol stimmten gut mit in der Literatur gefundenen Werten überein. Die Werte für Natriumnitrat und Natriumchlorid als Saataerosol waren kleiner als die von Ammoniumsulfat aber größer als der Wert von reinem Wasser. Für Ammoniumnitrat und Kaliumsulfat konnten keine Konstanten berechnet werden. Alle drei Saataerosole führten zu einem „Salting-in“. Das bedeutet, dass bei Erhöhung der Salzmolalität auch die Glyoxalkonzentration im Partikel stieg. Diese Beobachtungen sind auch in der Litera¬tur beschrieben, wobei die Ergebnisse dort nicht auf der Durchführung von Kammerexperi¬menten beruhen, sondern mittels bulk-Experimenten generiert wurden. Für die Trennung der Imidazole wurde eine neue Filterextraktionsmethode entwickelt, wobei sich ein Gemisch aus mit HCl angesäuertem ACN/H2O im Verhältnis 9/1 als optimales Extrak¬tionsmittel herausstellte. Drei verschiedenen Imidazole konnten mit dieser Methode quanti¬fiziert werden, nämlich 1-H-Imidazol-4-carbaldehyd (IC), Imidazol (IM) und 2,2‘-Biimidazol (BI). Die Effizienzen lagen für BI bei 95%, für IC bei 58% und für IM bei 75%. Kammerexperimente unter Zugabe von Ammoniak zeigten höhere Imidazolkonzentrationen als solche ohne. Wurden die Experimente ohne Ammoniak in Anwesenheit von Ammoni¬umsulfat durchgeführt, wurden höhere Imidazol-Konzentrationen gefunden als ohne Ammo¬niumionen. Auch die relative Luftfeuchtigkeit spielte eine wichtige Rolle, da sowohl eine zu hohe als auch eine zu niedrige relative Luftfeuchtigkeit zu einer verminderten Imidazolbildung führte. Durch mit 13C-markiertem Kohlenstoff durchgeführte Experimente konnte eindeutig gezeigt werden, dass es sich bei den gebildeten Imidazolen und Glyoxalprodukte handelte. Außerdem konnte der in der Literatur beschriebene Bildungsmechanismus erfolgreich weiter¬entwickelt werden. Während der CYPHEX Kampagne in Zypern konnten erstmalig Imidazole in Feldproben nach¬gewiesen werden. Das Hauptprodukt IC zeigte einen tageszeitlichen Verlauf mit höheren Kon¬zentrationen während der Nacht und korrelierte signifikant aber schwach mit der Acidität und Ammoniumionenkonzentration des gefundenen Aerosols.