4 resultados para Islands of the Adriatic
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The intraspecific phylogeography of four European coastal plants, Crithmum maritimum, Halimione portulacoides, Salsola kali and Calystegia soldanella, was inferred from AFLP and ITS data. Only in C. maritimum, H. portulacoides and S. kali, a spatial genetic structure was revealed. The phylogeographic similarities and dissimilarities of these species include: (1) All three have distinct Black/Aegean and Adriatic Sea clusters. (2) Salsola kali and H. portulacoides show a distinct Atlantic/North Sea/Baltic Sea cluster, while Atlantic and eastern Spanish material of C. maritimum clustered together. (3) In the west Mediterranean, only S. kali forms a single cluster, while both H. portulacoides and C. maritimum display a phylogeographic break in the vicinity of the southern French coast. For S. kali, AFLP and ITS data concur in identifying separate Atlantic, east and west Mediterranean clades. All these patterns are postulated to result from both temperature changes during the last glacial and contemporary sea currents. No geographic AFLP structure was revealed in C. soldanella, both at the range-wide and population level. This was attributed to the remarkable seed dispersal ability of this species and possibly its longevity and clonal growth, preserving a random pattern of genetic variation generated by long-distance seed dispersal over long time periods.
Resumo:
A finite-strain study in the Gran Paradiso massif of the Italian Western Alps has been carried out to elucidate whether ductile strain shows a relationship to nappe contacts and to shed light on the nature of the subhorizontal foliation typical of the gneiss nappes in the Alps. The Rf/_ and Fry methods used on feldspar porphyroclasts from 143 augengneiss and 11 conglomerate samples of the Gran Paradiso unit (upper tectonic unit of the Gran Paradiso massif), as well as, 9 augengneiss (Erfaulet granite) and 3 quartzite conglomerate samples from the underlying Erfaulet unit (lower unit of the Gran Paradiso massif), and 1 sample from mica schist. Microstructures and thermobarometric data show that feldspar ductility at temperatures >~450°C occurred only during high-pressure metamorphism, when the rocks were underplated beneath the overriding Adriatic plate. Therefore, the finite-strain data can be related to high-pressure metamorphism in the Alpine subduction zone. The augen gneiss was heterogeneously deformed and axial ratios of the strain ellipse in XZ sections range from 2.1 to 69.8. The long axes of the finite-strain ellipsoids trend W/WNW and the short axes are subvertical associated with a subhorizontal foliation. The strain magnitudes do not increase towards the nappe contacts. Geochemical work shows that the accumulation of finite strain was not associated with any significant volume strain. Hence, the data indicate flattening strain type in the Gran Paradiso unit and constrictional strain type in the Erfaulet unit and prove deviations from simple shear. In addition, electron microprobe work was undertaken to determine if the analysed fabrics formed during high-P metamorphism. The chemistry of phengites in the studied samples suggests that deformation and final structural juxtaposition of the Gran Paradiso unit against the Erfaulet took place during high-pressure metamorphism. On the other hand, nappe stacking occurred early during subduction probably by brittle imbrication and that ductile strain was superimposed on and modified the nappe structure during high-pressure underplating in the Alpine subduction zone. The accumulation of ductile strain during underplating was not by simple shear and involved a component of vertical shortening, which caused the subhorizontal foliation in the Gran Paradiso massif. It is concluded that this foliation formed during thrusting of the nappes onto each other suggesting that nappe stacking was associated with vertical shortening. The primary evidence for this interpretation is an attenuated metamorphic section with high-pressure metamorphic rocks of the Gran Paradiso unit juxtaposed against the Erfaulet unit. Therefore, the exhumation during high-pressure metamorphism in the Alpine subduction zone involved a component of vertical shortening, which is responsible for the subhorizontal foliation within the nappes.
Resumo:
Linear dispersal systems, such as coastal habitats, are well suited for phylogeographic studies because of their low spatial complexity compared to three dimensional habitats. Widely distributed coastal plant species additionally show azonal and often essentially continuous distributions. These properties, firstly, make it easier to reconstruct historical distributions of coastal plants and, secondly, make it more likely that present distributions contain both Quaternary refugia and recently colonized areas. Taken together this makes it easier to formulate phylogeographic hypotheses. This work investigated the phylogeography of Cakile maritima and Eryngium maritimum, two species growing in sandy habitats along the north Atlantic Ocean and the Mediterranean Sea coasts on two different spatial scales using AFLP data. The genetic structure of these species was investigated by sampling single individuals along most of their distributions from Turkey to south Sweden. On a regional scale the population genetic structure of both species was also studied in detail in the Bosporus and Dardanelles straits, the Strait of Gibraltar and along a continuous stretch of dunes in western France. Additionally, populations of C. maritima were investigated in the Baltic Sea/Kattegat/North Sea area. Over the complete sampling range the species show both differences and similarities in their genetic structure. In the Mediterranean Sea, both species contain Aegean Sea/Black Sea and west Mediterranean clusters. Cakile maritima additionally shows a clustering of Ionian Sea/Adriatic Sea collections. Further, both species show a subdivision of Atlantic Ocean/North Sea/Baltic Sea material from Mediterranean. Within the Atlantic Ocean group, C. maritima from the Baltic Sea and the most northern Atlantic localities form an additional cluster while no such substructure was found in E. maritimum. In all three instances where population genetic investigations of both species were performed in the same area, the results showed almost complete congruency of spatial genetic patterns. In the Aegean/Black Sea/Marmara region a subdivision of populations into a Black Sea, a Sea of Marmara and an Aegean Sea group is shared by both species. In addition the Sea of Marmara populations are more close to the Aegean Sea populations than they are to the Black Sea populations in both cases. Populations from the Atlantic side of the Strait of Gibraltar are differentiated from those on the Mediterranean side in both species, a pattern that confirms the results of the wide scale study. Along the dunes of West France no clear genetic structure could be detected in any of the species. Additionally, the results from the Baltic Sea/North Sea populations of C. maritima did not reveal any geographical genetic pattern. It is postulated that the many congruencies between the species are mainly due to a predominantly sea water mediated seed dispersal in both species and their shared sandy habitat. The results are compared to hypothetical distributions for the last glacial maximum based on species specific temperature requirements. It is argued that in both species the geographical borders of the clusters in the Mediterranean area were not affected by quaternary temperature changes and that the Aegean/Black Sea/Marmara cluster, and possibly the Ionian Sea/Adriatic Sea cluster in C. maritima, is the result of sea currents that isolate these basins from the rest of the sampled areas. The genetic gap in the Strait of Gibraltar between Atlantic Ocean and Mediterranean Sea populations in both species is also explained in terms of sea currents. The existence of three subgroups corresponding to the Aegean Sea, Black Sea and Sea of Marmara basins is suggested to have arisen due to geographical isolation during periods of global sea regressions in the glacials. The population genetic evidence was inconclusive regarding the Baltic Sea cluster of C. Maritima from the wide scale study. The results of this study are very similar to those of an investigation of three other coastal plant species over a similar range. This suggests that the phylo-geographic patterns of widespread coastal plants may be more predictable than those of other terrestrial plants.
Resumo:
From historical accounts it is well-known that the coasts of the Gulfs of Lakonia and Argolis (southern and eastern Peloponnese, Greece) have been repeatedly affected by tsunamis during historical times. It is assumed that these palaeotsunamis left sedimentological and geomorphological traces in the geological record which are still detectable these days. As both gulfs are located within one of the seismically most active regions in whole western Eurasia in particular the nearby Hellenic Trench is regarded as the main trigger for tsunami generation. Against this background, selected near-coast sedimentary archives were studied by means of sedimentological, geomorphological, geophysical, geochemical and microfaunal investigations in order to detect signatures of Holocene palaeotsunamigenic activity. The investigations revealed allochthonous sediment layers featuring distinctive sedimentary characteristics of marine high-energy event deposits in most of the investigated study areas. In order to differentiate between the geomorphodynamic driving mechanisms for the deposition of the associated marine high-energy event layers, a multi-method approach was used. The detected high-energy marine deposits are suggested to be of tsunamigenic origin. Radiocarbon dating results allowed establishing local event geo-chronostratigraphies and correlations on a local and regional scale as well as correlations with already described palaeotsunami findings on a supra-regional scale. The geochronological dataset attests repeated tsunamigenic activity at least since the 5th millennium BC up to the 17th century AD. For the studied areas in southeastern Lakonia up to four palaeotsunami event generations were identified, for central Lakonia three and for the investigated areas around the Argolis Gulf also up to four. Comparing the findings with literature data, chronological correlations were found with palaeotsunami deposits detected in near-coast geological archives of Akarnania, of the southwestern, the western and northwestern Peloponnese, with event deposits found on Crete and on the Ionian Islands of Cefalonia and Lefkada as well as with findings from southeastern Sicily (Italy) and Cesarea (Israel). By the identification of multiple palaeotsunami event layers, disturbing autochthonous near-coast sedimentary records of the Gulfs of Lakonia and Argolis during the last seven millennia, a significant tsunami frequency is attested for these regions.