5 resultados para Ion conductivity

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. These imidazolium salt containing acrylate monomers were polymerize at 70oC by free radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght. The chemical structure of the polymer electrolytes obtained by the described synthetic routes was investigated by NMR-spectroscopy. The polymers were doped with various amounts of H3PO4 and LiN(SO2CF3)2, to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally stable up to about 200◦C. DSC results indicates the softening effect of the length of the spacers (n) as well as phosphoric acid. The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4. It was observed that the lithium ion conductivity of the poly(AcIm-2-Li) x LiN(SO2CF3)2 increases with blends (x) up to certain composition and then leveled off independently from blend content. The conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li) x LiN(SO2CF3)2 where x is 10. The phosphate and phosphoric acid functionality in the resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the formation of cross-linked materials at elevated temperature which may improve the mechanical properties to be used as membrane materials in fuel cells. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to better resolved resonances in both the backbone region and side chain region. The mobile and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR spectra. The interaction of the protons which may contribute to the conductivity is observed from the 2D double quantum correlation (DQC) spectra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Dissertation befasst sich mit der Synthese, physikochemischen und polymerspezifischen Charakterisierung und insbesondere der impedanzspektroskopischen Untersuchung von sowohl neuartigen, solvensfreien lithiumionen- als auch protonenleitfähigen Polymermaterialien für potentielle Anwendungen in sekundären Lithiumionenbatterien bzw. in Hochtemperatur-Protonenaustauschmembran-Brennstoffzellen (engl.: proton exchange membrane fuel cell, auch: polymer electrolyte membrane fuel cell, PEMFC). Beiden Typen von ionenleitfähigen Membranen liegt das gängige Prinzip der chemischen Anbindung einer für den Ionentransport verantwortlichen Seitengruppe an eine geeignete Polymerhauptkette zugrunde („Entkopplung“; auch Immobilisierung), welcher hinsichtlich Glasübergangstemperatur (Tg), elektrochemischer und thermischer Stabilität (Td) eine dynamisch entkoppelte, aber nicht minder bedeutsame Rolle zukommt. Die Transportaktivierung erfolgt in beiden Fällen thermisch. Im Falle der Protonenleiter liegt die zusätzliche Intention darin, eine Alternative aufzuzeigen, in der die Polymerhauptkette gekoppelt direkt am Protonentransportmechanismus beteiligt ist, d.h., dass der translatorisch diffusive Ionentransport entlang der Hauptkette stattfindet und nicht zwischen benachbarten Seitenketten. Ein Hauptaugenmerk der Untersuchungen liegt sowohl bei den lithiumionen- als auch den protonenleitfähigen Polymermembranen auf temperaturabhängigen dynamischen Prozessen der jeweiligen Ionenspezies in der polymeren Matrix, was die Ionenleitfähigkeit selbst, Relaxationsphänomene, die translatorische Ionendiffusion und im Falle der Protonenleiter etwaige mesomere Grenzstrukturübergänge umfasst. Lithiumionenleiter: Poly(meth)acrylate mit (2-Oxo-1,3-dioxolan)resten (Cyclocarbonat-) in der Seitenkette unterschiedlicher Spacerlänge wurden synthetisiert und charakterisiert. Die Leitfähigkeit s(,T) erreicht bei Poly(2-oxo-[1,3]dioxolan-4-yl)methylacrylat (PDOA): Lithium-bis-trifluormethansulfonimid (LiTFSI) (10:3) ca. 10^-3,5 S cm^-1 bei 150 °C. Weichmachen (Dotieren) mit äquimolaren Mengen an Propylencarbonat (PC) bewirkt in allen Fällen einen enormen Anstieg der Leitfähigkeit. Die höchsten Leitfähigkeiten von Mischungen dieser Polymere mit LiTFSI (und LiBOB) werden nicht beim System mit der niedrigsten Tg gefunden. Auch dient Tg nicht als Referenztemperatur (Tref) nach Williams-Landel-Ferry (WLF), so dass eine WLF-Anpassung der Leitfähigkeitsdaten nur über einen modifizierten WLF-Algorithmus gelingt. Die ermittelten Tref liegen deutlich unterhalb von Tg bei Temperaturen, die charakteristisch für die Seitenkettenrelaxation sind („Einfrieren“). Dies legt nahe, dass der Relaxation der Seitenketten eine entscheidende Rolle im Li^+-Leitfähigkeitsmechanismus zukommt. Die Li^+-Überführungszahlen tLi^+ in diesen Systemen schwanken zwischen 0,13 (40 °C) und 0,55 (160 °C). Protonenleiter: Polymere mit Barbitursäure- bzw. Hypoxanthinresten in der Seitenkette und Polyalkylenbiguanide unterschiedlicher Spacerlänge wurden synthetisiert und charakterisiert. Die Leitfähigkeit s(,T) erreicht bei Poly(2,4,6(1H,3H,5H)-trioxopyrimidin-5-yl)methacrylat (PTPMA) maximal ca. 10^-4,4 S cm^-1 bei 140 °C. Höhere Leitfähigkeiten sind nur durch Mischen mit aprotischen Lösungsmitteln erreichbar. Die höchste Leitfähigkeit wird im Falle der Polyalkylenbiguanide bei Polyethylenbiguanid (PEB) erzielt. Sie erreicht 10^-2,4 S cm^-1 bei 190 °C. Die Aktivierungsenergien EA der Polyalkylenbiguanide liegen (jeweils unterhalb von Tg) zwischen ca. 3 – 6 kJ mol^-1. In allen beobachteten Fällen dient Tg als Tref, so dass eine konventionelle WLF-Behandlung möglich ist und davon auszugehen ist, dass die Leitfähigkeit mit dem freien Volumen Vf korreliert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The separator membrane in batteries and fuel cells is of crucial importance for the function of these devices. In lithium ion batteries the separator membrane as well as the polymer matrix of the electrodes consists of polymer electrolytes which are lithium ion conductors. To overcome the disadvantage of currently used polymer electrolytes which are highly swollen with liquids and thus mechanically and electrochemically unstable, the goal of this work is a new generation of solid polymer electrolytes with a rigid backbone and a soft side chain structure. Moreover the novel material should be based on cheap substrates and its synthesis should not be complicated aiming at low overall costs. The new materials are based on hydroxypropylcellulose and oligoethyleneoxide derivatives as starting materials. The grafting of the oligoethyleneoxide side chains onto the cellulose was carried out following two synthetic methods. One is based on a bromide derivative and another based on p-toluolsulfonyl as a leaving group. The side chain reagents were prepared form tri(ethylene glycol) monoethyl ether. In order to improve the mechanical properties the materials were crosslinked. Two different conceptions have been engaged based on either urethane chemistry or photosensitive dimethyl-maleinimide derivatives. PEO - graft - cellulose derivatives with a high degree of substitution between 2,9 and 3,0 were blended with lithium trifluoromethane-sulfonate, lithium bis(trifluorosulfone)imide and lithium tetrafluoroborate. The molar ratios were in the range from 0,02 to 0,2 [Li]/[O]. The products have been characterized with nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and laserlight scattering (LS) with respect to their degree of substitution and molecular weight. The effect of salt concentration on ionic conductivity, thermal behaviour and morphology has been investiga-ted with impedance spectroscopy, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The crosslinking reactions were controlled with dynamic mechanical analysis (DMS). The degree of substitution of our products is varying between 2,8 and 3,0 as determined by NMR. PEO - graft - cellulose derivatives are highly viscous liquids at room temperature with glass transition temperatures around 215 K. The glass transition temperature for the Lithium salt complexes of PEO - graft - cellulose deri-vatives increase with increasing salt content. The maximum conductivity at room temperature is about 10-4 and at 100°C around 10-3 Scm-1. The presence of lithium salt decreases the thermal stability of the complexes in comparison to pure PEO - graft - cellulose derivatives. Complexes heated over 140 – 150°C completely lose their ionic conductivity. The temperature dependence of the conductivity presented as Arrhenius-type plots for all samples is similar in shape and follows a VTF behaviour. This proofs that the ionic transport is closely related to the segmental motions of the polymer chains. Novel cellulose derivatives with grafted oligoethylen-oxide side chains with well-defined chemical structure and high side chain grafting density have been synthesized. Cellulose was chosen as stiff, rod like macromolecule for the backbone while oligoethylen-oxides are chosen as flexible side chains. A maximum grafting density of 3.0 have been obtained. The best conductivity reaches 10-3 Scm-1 at 100°C for a Li-triflate salt complex with a [Li]/[O] ratio of 0.8. The cross-linked complexes containing the lithium salts form elastomeric films with convenient mechanical stability. Our method of cellulose modification is based on relatively cheap and commercially available substrates and as such appears to be a promising alternative for industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed tethered bilayer lipid membranes (tBLMs) are described based on the self-assembly of a monolayer on template stripped gold, of an archea analogue thiolipid, 2,3-di-o-phytanyl-sn-glycerol-1-tetraethylene glycol-D,L--lipoic acid ester lipid (DPTL), and a newly designed dilution molecule, tetraethylene glycol-D,L--lipoic acid ester (TEGL). The usage of spacer and addition of extra dilution molecules between the substrate and the bilayer is that this architecture provides an ionic reservoir underneath the membrane, avoiding direct contact of the embedded membrane proteins with the gold electrodes and increasing the lateral diffusion of the bilayer, thus allowing for the incorporation of complex channels proteins which are failed in non-diluted systems. The tBLM is completed by fusion of liposomes made from a mixture of 1,2-diphythanolyl-sn-glycero-3-phosphocholine (DPhyPC), cholesterol, and 1,2-diphytanoyl-sn-Glycero-3-phosphate (DPhyPG) in a molar ratio of 6:3:1. Varying the mixing ratio, the optimum mixing ratio was obtained at a dilution factor of DPTL and TEGL at 90%:10%. Only under these conditions, the mixed tBLM showed electrical properties, as shown by EIS, which are comparable to a BLM. With higher dilution factors, a defect-free lipid bilayer was not formed. Formation of bilayers have been characterized by different techniques, such as surface plasmon resonance (SPR), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). Different proteins such as hemolysin, melittin, gramicidin, M2, Maxi-K, nAChR and bacteriohodopsin are incorporated into these tBLMs as shown by SPR and EIS studies. Ionic conductivity at 0 V vs. Ag|AgCl, 3M KCl were measured by EIS measurements. Our results indicate that these proteins have been successfully incorporated into a very stable tBLM environment in a functionally active form. Therefore, we conclude that the mixed tBLMs have been successfully designed as a general platform for biosensing and screening purposes of membrane proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient energy storage and conversion is playing a key role in overcoming the present and future challenges in energy supply. Batteries provide portable, electrochemical storage of green energy sources and potentially allow for a reduction of the dependence on fossil fuels, which is of great importance with respect to the issue of global warming. In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. rnrnSteps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well-defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of ‘immobilizing’ ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with pro-pylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length.rnrnAll model compounds were fully characterized, pure and thermally stable up to at least 235 °C, covering the requested broad range of glass transition temperatures from -78.1 °C up to +6.2 °C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity σ_dc and thus indicating comparable salt dissociation and rather independent motion of cations and ions.rnrnIn general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest σ_dc obtained at ambient temperatures was 6.0 x 10-6 S•cm-1, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased σ_dc values for the oligo(ethylene oxide) based analogues.rnrnFurther insights into the mechanism of lithium ion dynamics were derived from 7Li and 13C Solid- State NMR investigations. While localized ion motion was probed by i.e. 7Li spin-lattice relaxation measurements with apparent activation energies E_a of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E_a of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the μm-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring ‘softer’ solvating moieties in future electrolytes.rn