2 resultados para Internet Of Things, IoT, Wearable, Domotica, Embedded, Arduino, Raspberry, Apple, SmartWatch, Apple Watch, Smart Home, Cloud, Computing

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of the present study is to understand the mechanism of mass transfer, the composition and the role of fluids during crustal metasomatism in high-temperature metamorphic terranes. A well constrained case study, a locality at Rupaha, Sri Lanka was selected. It is located in the Highland Complex of Sri Lanka, which represents a small, but important fragment of the super-continent Gondwana. Excellent exposures of ultramafic rocks, which are embedded in granulites, were found at 10 localities. These provide a unique background for understanding the metasomatic processes. The boundary between the ultramafic and the granulite rocks are lined with metasomatic reaction zones up to 50cm in width. Progressing from the ultramafics to the granulite host rock, three distinct zones with the following mineral assemblages can be distinguished: (1). phlogopite + spinel + sapphirine, (2). spinel + sapphirine and (3). corundum + biotite + plagioclase. In order to assess the P-T-t path, the peak metamorphism and the exhumation history were constrained using different thermobarometers, as well as a diffusion model of garnet zoning. A maximum temperature of 875 ± 20oC (Opx-Cpx thermometer) and at the peak pressure of 9.0 ± 0.1 kbar (Grt-Cpx-Pl-Qtz) was calculated for the silicic granulite. The ultramafic rocks recorded a peak temperature of 840 ± 70oC (Opx-Cpx thermometer) at 9 kbar. Coexisting spinel and sapphirine from the reaction zone yield a temperature of 820 ± 40oC. This is in agreement with the peak-temperatures recorded in the adjacent granulites and ultramafics rocks. The structural concordance of the ultramafic rocks with the siliceous granulite host rock further support the suggestion, that all units have experienced the same peak metamorphism. Diffusion modeling of retrograde zoning in garnets from mafic granulites suggests a three-step cooling history. A maximum cooling rate of 1oC/Ma is estimated during the initial stage of cooling, followed by a cooling rate of ~30oC/Ma. The outermost rims of garnet indicate a slightly slower cooling rate at about 10-15oC/Ma. The sequences of mineral zones, containing a variety of Al-rich, silica undersaturated minerals in the reaction zones separating the ultramafic rocks from the silica-rich rocks can be explained by a diffusion model. This involves the diffusion of Mg from ultramafic rocks across the layers, and K and Si diffuse in opposite direction. Chemical potential of Mg and Si generated continuous monotonic gradient, allowing steady state diffusional transport across the profile. The strong enrichment in Al, and the considerable loss of Si, during the formation of reaction bands can be inferred from isocon diagrams. Some Al was probably added to the reaction zones, while Si was lost. This is most likely due to fluids percolating parallel to the zones at the boundary of the rock units. This study has shown that not only pressure and temperature conditions but most importantly PH2O and the concentration of the chlorine and fluorine in aqueous fluids also control the mass transport in different geological environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The membrane protein Cytochrome c Oxidase (CcO) is one of the most important functional bio-molecules. It appears in almost every eukaryotic cell and many bacteria. Although the different species differ in the number of subunits, the functional differences are merely marginal. CcO is the terminal link in the electron transfer pathway of the mitochondrial respiratory chain. Electrons transferred to the catalytic center of the enzyme conduce to the reduction of molecular oxygen to water. Oxygen reduction is coupled to the pumping of protons into the inter-membrane space and hence generates a difference in electrochemical potential of protons across the inner mitochondrial membrane. This potential difference drives the synthesis of adenosine triphosphate (ATP), which is the universal energy carrier within all biological cells. rnrnThe goal of the present work is to contribute to a better understanding of the functional mechanism of CcO by using time-resolved surface enhanced resonance Raman spectroscopy (TR-SERRS). Despite intensive research effort within the last decades, the functional mechanism of CcO is still subject to controversial discussions. It was the primary goal of this dissertation to initiate electron transfer to the redox centers CuA, heme a, heme a3 and CuB electrochemically and to observe the corresponding redox transitions in-situ with a focus on the two heme structures by using SERRS. A measuring cell was developed, which allowed combination of electrochemical excitation with Raman spectroscopy for the purpose of performing the accordant measurements. Cytochrome c was used as a benchmark system to test the new measuring cell and to prove the feasibility of appropriate Raman measurements. In contrast to CcO the heme protein cc contains only a single heme structure. Nevertheless, characteristic Raman bands of the hemes can be observed for both proteins.rnrnIn order to investigate CcO it was immobilized on top of a silver substrate and embedded into an artificial membrane. The catalytic activity of CcO and therefore the complete functional capability of the enzyme within the biomimetic membrane architecture was verified using cyclic voltammetry. Raman spectroscopy was performed using a special nano-structured silver surface, which was developed within the scope of the present work. This new substrate combined two fundamental properties. It facilitated the formation of a protein tethered bilayer lipid membrane (ptBLM) and it allowed obtaining Raman spectra with sufficient high signal-to-noise ratios.rnSpectro-electrochemical investigations showed that at open circuit potential the enzyme exists in a mixed-valence state, with heme a and and heme a3 in the reduced and oxidized state, respectively. This was considered as an intermediate state between the non-activated and the fully activated state of CcO. Time-resolved SERRS measurements revealed that a hampered electron transfer to the redox center heme a3 characterizes this intermediate state.rn