4 resultados para INTERACTION NETWORKS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The presented thesis describes the formation of functional neuronal networks on an underlying micropattern. Small circuits of interconnected neurons defined by the geometry of the patterned substrate could be observed and were utilised as a model system of reduced complexity for the behaviour of neuronal network formation and activity. The first set of experiments was conducted to investigate aspects of the substrate preparation. Micropatterned substrates were created by microcontact printing of physiological proteins onto polystyrene culture dishes. The substrates displayed a high contrast between the repellant background and the cell attracting pattern, such that neurons seeded onto these surfaces aligned with the stamped structure. Both the patterning process and the cell culture were optimised, yielding highly compliant low-density networks of living neuronal cells. In the second step, cellular physiology of the cells grown on these substrates was investigated by patch-clamp measurements and compared to cells cultivated under control conditions. It could be shown that the growth on a patterned substrate did not result in an impairment of cellular integrity nor that it had an impact on synapse formation or synaptic efficacy. Due to the extremely low-density cell culture that was applied, cellular connectivity through chemical synapses could be observed at the single cell level. Having established that single cells were not negatively affected by the growth on patterned substrates, aspects of network formation were investigated. The formation of physical contact between two cells was analysed through microinjection studies and related to the rate at which functional synaptic contacts formed between two neighbouring cells. Surprisingly, the rate of synapse formation between physically contacting cells was shown to be unaltered in spite of the drastic reduction of potential interaction partners on the micropattern. Additional features of network formation were investigated and found consistent with results reported by other groups: A different rate of synapse formation by excitatory and inhibitory neurons could be reproduced as well as a different rate of frequency-dependent depression at excitatory and inhibitory synapses. Furthermore, regarding simple feedback loops, a significant enrichment of reciprocal connectivity between mixed pairs of excitatory and inhibitory neurons relative to uniform pairs could be demonstrated. This phenomenon has also been described by others in unpatterned cultures [Muller, 1997] and may therefore be a feature underlying neuronal network formation in general. Based on these findings, it can be assumed that inherent features of neuronal behaviour and cellular recognition mechanisms were found in the cultured networks and appear to be undisturbed by patterned growth. At the same time, it was possible to reduce the complexity of the forming networks dramatically in a cell culture on a patterned surface. Thus, features of network architecture and synaptic connectivity could be investigated on the single cell level under highly defined conditions.
Resumo:
Being basic ingredients of numerous daily-life products with significant industrial importance as well as basic building blocks for biomaterials, charged hydrogels continue to pose a series of unanswered challenges for scientists even after decades of practical applications and intensive research efforts. Despite a rather simple internal structure it is mainly the unique combination of short- and long-range forces which render scientific investigations of their characteristic properties to be quite difficult. Hence early on computer simulations were used to link analytical theory and empirical experiments, bridging the gap between the simplifying assumptions of the models and the complexity of real world measurements. Due to the immense numerical effort, even for high performance supercomputers, system sizes and time scales were rather restricted until recently, whereas it only now has become possible to also simulate a network of charged macromolecules. This is the topic of the presented thesis which investigates one of the fundamental and at the same time highly fascinating phenomenon of polymer research: The swelling behaviour of polyelectrolyte networks. For this an extensible simulation package for the research on soft matter systems, ESPResSo for short, was created which puts a particular emphasis on mesoscopic bead-spring-models of complex systems. Highly efficient algorithms and a consistent parallelization reduced the necessary computation time for solving equations of motion even in case of long-ranged electrostatics and large number of particles, allowing to tackle even expensive calculations and applications. Nevertheless, the program has a modular and simple structure, enabling a continuous process of adding new potentials, interactions, degrees of freedom, ensembles, and integrators, while staying easily accessible for newcomers due to a Tcl-script steering level controlling the C-implemented simulation core. Numerous analysis routines provide means to investigate system properties and observables on-the-fly. Even though analytical theories agreed on the modeling of networks in the past years, our numerical MD-simulations show that even in case of simple model systems fundamental theoretical assumptions no longer apply except for a small parameter regime, prohibiting correct predictions of observables. Applying a "microscopic" analysis of the isolated contributions of individual system components, one of the particular strengths of computer simulations, it was then possible to describe the behaviour of charged polymer networks at swelling equilibrium in good solvent and close to the Theta-point by introducing appropriate model modifications. This became possible by enhancing known simple scaling arguments with components deemed crucial in our detailed study, through which a generalized model could be constructed. Herewith an agreement of the final system volume of swollen polyelectrolyte gels with results of computer simulations could be shown successfully over the entire investigated range of parameters, for different network sizes, charge fractions, and interaction strengths. In addition, the "cell under tension" was presented as a self-regulating approach for predicting the amount of swelling based on the used system parameters only. Without the need for measured observables as input, minimizing the free energy alone already allows to determine the the equilibrium behaviour. In poor solvent the shape of the network chains changes considerably, as now their hydrophobicity counteracts the repulsion of like-wise charged monomers and pursues collapsing the polyelectrolytes. Depending on the chosen parameters a fragile balance emerges, giving rise to fascinating geometrical structures such as the so-called pear-necklaces. This behaviour, known from single chain polyelectrolytes under similar environmental conditions and also theoretically predicted, could be detected for the first time for networks as well. An analysis of the total structure factors confirmed first evidences for the existence of such structures found in experimental results.
Resumo:
It is currently widely accepted that the understanding of complex cell functions depends on an integrated network theoretical approach and not on an isolated view of the different molecular agents. Aim of this thesis was the examination of topological properties that mirror known biological aspects by depicting the human protein network with methods from graph- and network theory. The presented network is a partial human interactome of 9222 proteins and 36324 interactions, consisting of single interactions reliably extracted from peer-reviewed scientific publications. In general, one can focus on intra- or intermodular characteristics, where a functional module is defined as "a discrete entity whose function is separable from those of other modules". It is found that the presented human network is also scale-free and hierarchically organised, as shown for yeast networks before. The interactome also exhibits proteins with high betweenness and low connectivity which are biologically analyzed and interpreted here as shuttling proteins between organelles (e.g. ER to Golgi, internal ER protein translocation, peroxisomal import, nuclear pores import/export) for the first time. As an optimisation for finding proteins that connect modules, a new method is developed here based on proteins located between highly clustered regions, rather than regarding highly connected regions. As a proof of principle, the Mediator complex is found in first place, the prime example for a connector complex. Focusing on intramodular aspects, the measurement of k-clique communities discriminates overlapping modules very well. Twenty of the largest identified modules are analysed in detail and annotated to known biological structures (e.g. proteasome, the NFκB-, TGF-β complex). Additionally, two large and highly interconnected modules for signal transducer and transcription factor proteins are revealed, separated by known shuttling proteins. These proteins yield also the highest number of redundant shortcuts (by calculating the skeleton), exhibit the highest numbers of interactions and might constitute highly interconnected but spatially separated rich-clubs either for signal transduction or for transcription factors. This design principle allows manifold regulatory events for signal transduction and enables a high diversity of transcription events in the nucleus by a limited set of proteins. Altogether, biological aspects are mirrored by pure topological features, leading to a new view and to new methods that assist the annotation of proteins to biological functions, structures and subcellular localisations. As the human protein network is one of the most complex networks at all, these results will be fruitful for other fields of network theory and will help understanding complex network functions in general.
Resumo:
Gels are elastic porous polymer networks that are accompanied by pronounced mechanical properties. Due to their biocompatibility, ‘responsive hydrogels’ (HG) have many biomedical applications ranging from biosensors and drug delivery to tissue engineering. They respond to external stimuli such as temperature and salt by changing their dimensions. Of paramount importance is the ability to engineer penetrability and diffusion of interacting molecules in the crowded HG environment, as this would enable one to optimize a specific functionality. Even though the conditions under which biomedical devices operate are rather complex, a bottom-up approach could reduce the complexity of mutually coupled parameters influencing tracer mobility. The present thesis focuses on the interaction-induced tracer diffusion in polymer solutions and their homologous gels, probed by means of Fluorescence Correlation Spectroscopy (FCS). This is a single-molecule-sensitive technique having the advantage of optimal performance under ultralow tracer concentrations, typically employed in biosensors. Two different types of hydrogels have been investigated, a conventional one with broad polydispersity in the distance between crosslink points and a so-called ‘ideal’, with uniform mesh size distribution. The former is based on a thermoresponsive polymer, exhibiting phase separation in water at temperatures close to the human body temperature. The latter represents an optimal platform to study tracer diffusion. Mobilities of different tracers have been investigated in each network, varying in size, geometry and in terms of tracer-polymer attractive strength, as perturbed by different stimuli. The thesis constitutes a systematic effort towards elucidating the role of the strength and nature of different tracer-polymer interactions, on tracer mobilities; it outlines that interactions can still be very important even in the simplified case of dilute polymer solutions; it also demonstrates that the presence of permanent crosslinks exerts distinct tracer slowdown, depending on the tracer type and the nature of the tracer-polymer interactions, expressed differently by each tracer with regard to the selected stimulus. In aqueous polymer solutions, the tracer slowdown is found to be system-dependent and no universal trend seems to hold, in contrast to predictions from scaling theory for non-interacting nanoparticle mobility and empirical relations concerning the mesh size in polymer solutions. Complex tracer dynamics in polymer networks may be distinctly expressed by FCS, depending on the specific synergy among-at least some of - the following parameters: nature of interactions, external stimuli employed, tracer size and type, crosslink density and swelling ratio.