4 resultados para INDUCED PLASMA SPECTROSCOPY
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das wichtigste Oxidationsmittel für den Abbau flüchtiger Kohlenwasserstoffverbindungen (VOC, engl.: volatile organic compounds) in der Atmosphäre ist das Hydroxylradikal (OH), welches sich in einem schnellen chemischen Gleichgewicht mit dem Hydroperoxylradical (HO2) befindet. Bisherige Messungen und Modellvergleiche dieser Radikalspezies in Waldgebieten haben signifikante Lücken im Verständnis der zugrundeliegenden Prozesse aufgezeigt.rnIm Rahmen dieser Doktorarbeit wurden Messungen von OH- und HO2-Radikalen mittelsrnlaserinduzierten Fluoreszensmesstechnik (LIF, engl.: laser-induced fluorescence) in einem Nadelwald in Süd-Finnland während der Messkampagne HUMPPA–COPEC–2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) im Sommer 2010 durchgeführt. Unterschiedliche Komponenten des LIF-Instruments wurden verbessert. Eine modifizierte Methode zur Bestimmung des Hintergrundsignals (engl.: InletPreInjector technique) wurde in den Messaufbaurnintegriert und erstmals zur Messung von atmosphärischem OH verwendet. Vergleichsmessungen zweier Instrumente basierend auf unterschiedlichen Methoden zur Messung von OH-Radikalen, chemische Ionisationsmassenspektrometrie (CIMS - engl.: chemical ionization mass spectrometry) und LIF-Technik, zeigten eine gute Übereinstimmung. Die Vergleichsmessungen belegen das Vermögen und die Leistungsfähigkeit des modifizierten LIF-Instruments atmosphärische OH Konzentrationen akkurat zu messen. Nachfolgend wurde das LIF-Instrument auf der obersten Plattform eines 20m hohen Turmes positioniert, um knapp oberhalb der Baumkronen die Radikal-Chemie an der Schnittstelle zwischen Ökosystem und Atmosphäre zu untersuchen. Umfangreiche Messungen - dies beinhaltet Messungen der totalen OH-Reaktivität - wurden durchgeführt und unter Verwendung von Gleichgewichtszustandsberechnungen und einem Boxmodell, in welches die gemessenen Daten als Randbedingungen eingehen, analysiert. Wenn moderate OH-Reaktivitäten(k′(OH)≤ 15 s−1) vorlagen, sind OH-Produktionsraten, die aus gemessenen Konzentrationen von OH-Vorläuferspezies berechnet wurden, konsistent mit Produktionsraten, die unter der Gleichgewichtsannahme von Messungen des totalen OH Verlustes abgeleitet wurden. Die primären photolytischen OH-Quellen tragen mit einem Anteil von bis zu einem Drittel zur Gesamt-OH-Produktion bei. Es wurde gezeigt, dass OH-Rezyklierung unter Bedingungen moderater OH-Reaktivität hauptsächlich durch die Reaktionen von HO2 mit NO oder O3 bestimmt ist. Während Zeiten hoher OH-Reaktivität (k′(OH) > 15 s−1) wurden zusätzliche Rezyklierungspfade, die nicht über die Reaktionen von HO2 mit NO oder O3, sondern direkt OH bilden, aufgezeigt.rnFür Hydroxylradikale stimmen Boxmodell-Simulationen und Messungen gut übereinrn(OHmod/OHobs=1.04±0.16), während HO2-Mischungsverhältnisse in der Simulation signifikant unterschätzt werden (HO2mod/HO2obs=0.3±0.2) und die simulierte OH-Reaktivität nicht mit der gemessenen OH-Reaktivität übereinstimmt. Die gleichzeitige Unterschätzung der HO2-Mischungsverhältnisse und der OH-Reaktivität, während OH-Konzentrationen von der Simulation gut beschrieben werden, legt nahe, dass die fehlende OH-Reaktivität in der Simulation eine noch unberücksichtigte HO2-Quelle darstellt. Zusätzliche, OH-unabhängigernRO2/HO2-Quellen, wie z.B. der thermische Zerfall von herantransportiertem peroxyacetylnitrat (PAN) und die Photolyse von Glyoxal sind indiziert.
Resumo:
Im Rahmen dieser Arbeit wurden zwei verschiedene Systeme untersucht, deren verbindende Gemeinsamkeit in den verwendeten ortsauflösenden, spektroskopischen Messmethoden der Oberflächenanalytik, wie z.B. abbildendes XPS, Röntgennahkanten-Photoemissionsmikroskopie (XANES-PEEM) und Augerspektroskopie (AES) liegt. Im ersten Teil der Arbeit wurden Diamant-Nukleationsdomänen auf Ir/SrTiO3 untersucht und mit vorherrschenden Modellen aus der Literatur verglichen. Die Nukleationsdomänen, wie sie im Mikrowellen-induzierten CVD Prozess unter Verwendung der BEN Prozedur (bias-enhanced nucleation) entstehen, bilden die „Startschicht“ für ein heteroepitaktisches Wachstum einer hoch orientierten Diamantschicht. Sie entwickeln sich aber unter Bedingungen, unter denen 3D-Diamant abgetragen und weggeätzt wird. Mittels XANES-PEEM Messungen konnte erstmals die lokale Bindungsumgebung des Kohlenstoffs in den Nukleationsdomänen ortsaufgelöst aufgezeigt werden und aus AES Messungen ließ sich die Schichtdicke der Nukleationsdomänen abschätzen. Es zeigte sich, dass die Nukleationsdomänen Bereiche mit etwa 1 nm Dicke darstellen, in denen der Übergang von eine sp2-koordinierte amorphen Kohlenstoff- zu einer Diamantschicht mit hohem sp3 Anteil abläuft. Zur Erklärung des Nukleationsprozesses wurde auf das „Clustermodell“ von Lifshitz et al. zurückgegriffen, welches um einen wesentlichen Aspekt erweitert wurde. Die Stabilität der Nukleationsdomänen gegen die Ätzwirkung des Nukleationsprozesses auf Volumendiamant wird durch eine starke Wechselwirkung zwischen dem Diamant und dem Iridiumsubstrat erklärt, wobei die Dicke von etwa 1 nm als Maß für die Ausdehnung dieses Wechselwirkungsbereichs angesehen wird. Der zweite Teil der Arbeit beschäftigt sich mit der Charakterisierung präsolarer SiC-Körner und darin eingeschlossener Spurenelemente. Neben den Hauptelementen Si und C wurden auch Spinelle wie Chromit (FeCr2O4), Korund (Al2O3) und auch verschiedene Spurenelemente (z. B. Al, Ba und Y) nachgewiesen. Ferner wurden XPS-Linien bei Energien nachgewiesen, welche sich den Seltenen Erden Erbium, Thulium und Dysprosium zuordnen lassen. Aufgrund von Abweichungen zur Literatur bzgl. der ausgeprägten Intensität der XPS-Linien, wurde als alternative Erklärungsmöglichkeit für verschiedene Signale der Nachweis von stark schwefelhaltigen Körnern (z.B. so genannte „Fremdlinge“) mit Aufladungen von mehreren Volt diskutiert. Es zeigt sich, dass abbildendes XPS und XANES-PEEM Methoden zur leistungsfähigen chemischen Charakterisierung von SiC-Körnern und anderer solarer und präsolarer Materie im Größenbereich bis herab zu 100 – 200 nm Durchmesser (z.B. als Grundlage für eine spätere massenspektrometrische Isotopenanalyse)darstellen.
Resumo:
In dieser Arbeit wurde ein zweidimensionales Kopplungssystem zur Bestimmung von leichtflüchtigen bromierten und iodierten Kohlenwasserstoffen (LHKW) in Wasser- und Luftproben entwickelt. Hierzu wurde ein Gaschromatograph mit einem Elektroneneinfangdetektor (ECD) on-line an ein elementselektives induktiv gekoppeltes Plasma-Massenspektrometer (ICPMS) gekoppelt. Dieses extrem nachweisstarke Analysensystem ermöglicht eine simultane Identifizierung unbekannter und koeluierender Peaks sowie eine vereinfachte Quantifizierung mittels ICPMS. Beim Vergleich des GC-ECD-ICPMS-Kopplungssystem mit den herkömmlichen Detektionsmethoden wie dem Massenspektrometer mit Elektronenstoss-Ionisation und dem Atomemissionsdetektor mit mikrowelleninduziertem Plasma schnitt das neu entwickelte Kopplungssystem ausgezeichnet ab. Für die Isolierung der LHKW aus Meerwasserproben wurde die Purge und Trap Technik verwendet, Luftproben wurden durch Besaugung auf Adsorptionsmaterial angereichert. Im Rahmen des BMBF-Teilprojektes ReHaTrop/AFOHAL wurden im August 2001 und im April/Mai 2002 an der Deutschen Nordseeküste Probenahmen durchgeführt. Die Konzentrationen der Wasserproben lagen im Bereich von 0,1-158 ng L-1, die der Luftproben im Bereich von 0,01-470 pptv. Die Messungen bestätigen die wichtige Rolle von Makroalgen im Zusammenhang mit der Produktion von halogenierten Kohlenwasserstoffen. Die Konzentration der iodierten und bromierten Kohlenwasserstoffe war immer höher in Proben, die direkten Kontakt mit Makroalgen hatten. Inkubationsexperimente zeigen für verschiedene braune und grüne Makroalgen individuelle Fingerprints der biogenen LHKW-Produktion. Bei den Messungen an der Nordseeküste wurden Abhängigkeiten zwischen den LHKW und meteorologischen Parametern gefunden.
Resumo:
Currently pi-conjugated polymers are considered as technologically interesting materials to be used as functional building elements for the development of the new generation of optoelectronic devices. More specifically during the last few years, poly-p-phenylene materials have attracted considerable attention for their blue photoluminescence properties. This Thesis deals with the optical properties of the most representative blue light poly-p-phenylene emitters such as poly(fluorene), oligo(fluorene), poly(indenofluorene) and ladder-type penta(phenylene) derivatives. In the present work, laser induced photoluminescence spectroscopy is used as a major tool for the study of the interdependence between the dynamics of the probed photoluminescence, the molecular structures of the prepared polymeric films and the presence of chemical defects. Complementary results obtained by two-dimensional wide-angle X-ray diffraction are reported. These findings show that the different optical properties observed are influenced by the intermolecular solid-state interactions that in turn are controlled by the pendant groups of the polymer backbone. A significant feedback is delivered regarding the positive impact of a new synthetic route for the preparation of a poly(indenofluorene) derivative on the spectral purity of the compound. The energy transfer mechanisms that operate in the studied systems are addressed by doping experiments. After the evaluation of the structure/property interdependence, a new optical excitation pathway is presented. An efficient photon low-energy up-conversion that sensitises the blue emission of poly(fluorene) is demonstrated. The observed phenomenon takes place in poly(fluorene) derivatives hosts doped with metallated octaethyl porphyrins, after quasi-CW photoexcitation of intensities in the order of kW/cm2. The up-conversion process is parameterised in terms of temperature, wavelength excitation and central metal cation in the porphyrin ring. Additionally the observation of the up-conversion is extended in a broad range of poly-p-phenylene blue light emitting hosts. The dependence of the detected up-conversion intensity on the excitation intensity and doping concentration is reported. Furthermore the dynamics of the up-conversion intensity are monitored as a function of the doping concentration. These experimental results strongly suggest the existence of triplet-triplet annihilation events into the porphyrin molecules that are subsequently followed by energy transfer to the host. After confirming the occurrence of the up-conversion in solutions, cyclic voltammetry is used in order to show that the up-conversion efficiency is partially determined from the energetic alignment between the HOMO levels of the host and the dopant.