4 resultados para Hydrochloric acid and mild steel
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Salpetrige Säure (HONO) ist eine wichtige Form von reaktivem Stickstoff, die aufgrund ihrer Photolyse zu Stickstoffmonoxid (NO) und dem Hydroxylradikal (OH), sehr kurzlebig ist. Ein genaues Verständnis der Quellen und Senken von HONO ist eine grundlegende Voraussetzung, um dessen Einfluss auf die Umwelt zu beurteilen. Allerdings wird immer noch nach einer starken HONO-Quelle am Tag gesucht und nächtliche HONO-Deposition auf den Boden wurde bisher stets nur postuliert. Diese Dissertation folgt der Zielsetzung die Prozesse der HONO-Aufnahme und Freisetzung von Böden aufzudecken und die zugrunde liegenden Mechanismen zu verstehen.rnUm die Rolle von HONO-Bodenemissionen zu quantifizieren, wurden 17 Böden in einem dynamischen Kammersystem untersucht. Es konnten HONO-Emissionen derselben Größenordnung wie die bereits gut untersuchten NO-Emissionen festgestellt werden. Unerwarteter Weise wurden die stärksten Emissionen bei Böden mit neutralem pH aus ariden und landwirt¬schaftlichen Gebieten beobachtet. Die Temperaturabhängigkeit der Bodenemissionen von HONO und NO führten zu der Annahme einer mikrobiellen Freisetzung von HONO, welche durch Reinkulturexperimente mit dem ammoniumoxidierenden Bakterium Nitrosomonas europaea bestätigt werden konnte. Ein konzeptionelles Model für die Freisetzung reaktiver Stickstoffverbindungen aus Böden in Abhängigkeit des Bodenwassergehaltes wurde um HONO-Emissionen erweitert.rnDurch Nachweise mittels Reinkultur- und Inhibitionsexperimenten konnten weitere Untersuchungen der bakteriellen Freisetzung von HONO aus Böden zeigen, dass innerhalb der bakteriellen Nitrifikation nur ammoniumoxidierende Bakterien zur Emission von HONO fähig sind. Durch kontrolliert initiierte Zelllyse konnte gezeigt werden, dass intrazellulär akkumuliertes Hydroxylamin (NH2OH) für die HONO-Freisetzung verantwortlich sind. Zum ersten Mal wurde NH2OH in der Gasphase nachgewiesen und dass dieses über den gesamten Bodenfeuchtebereich von ammoniumoxidierenden Bakterien freigesetzt wird. Es wurde gezeigt, dass die heterogene Reaktion von NH2OH mit Wasserdampf auf einer Glasperlenoberfläche HONO bildet. Diese Reaktion erklärt die beobachtete Freisetzung von HONO bei niedrigen Bodenfeuchten, da nur dann die Oberfläche zur Reaktion zur Verfügung steht und nicht von Wasser bedeckt ist.rnEine 15N Isotopenmarkierungsmethode wurde entwickelt um isotopenmarkiertes gasförmiges HONO zu messen, was die Untersuchung der Bildungsprozesse von HONO und dessen Rolle in biogeochemischen Zyklen ermöglicht. Die Anwendung dieser neuen Methode auf eine Bodenprobe die mit 15N Harnstoff angereichert und in einem dynamischen Kammersystem untersucht wurde, bestätigt die obigen Ergebnisse einer starken mikrobiellen Beteiligung von Bodenbakterien zur HONO Freisetzung.rnBidirektionale Flüsse von HONO wurden für sechs untersuchte Bodenproben gefunden. Die Richtung der Flüsse hängt dabei vom Umgebungsmischungsverhältnis von HONO und dem Bodenwassergehalt ab. Eine wichtige Größe, die die bidirektionalen Flüsse von HONO beschreibt, ist das „Ökosystem spezifische Kompensationsmischungsverhältnis von HONO“, χcomp. Dieser neue Begriff wurde definiert und eingeführt, da die verschiedenen in den Bodenaustausch von HONO involvierten Prozesse nicht mit dem klassischen Kompensationspunktkonzept kompatibel sind. Die Untersuchungen bestätigen neueste Feldbeobachtungen, dass HONO, welches bei hohen Umgebungsmischungsverhältnissen vom Boden adsorbiert wird, bei niedrigen Mischungsverhält-nissen wieder vom Boden desorbiert wird. Folglich wird nächtlich akkumuliertes HONO tagsüber in eine Quelle für HONO umgewandelt. Vier Prozesse - Verteilung von HONO zwischen Gas- und Flüssigphase nach Henrys Gesetz, bakterielle HONO Bildung aus NH2OH, Adsorption und Desorption von HONO - und deren Dominanz in speziellen Bodenfeuchtebereichen wurden identifiziert. Dadurch wurde ein konzeptionelles Model für die Prozesse, die in Aufnahme und Freisetzung von HONO aus Böden involviert sind, als Funktion der Bodenfeuchte entwickelt.rnZusammenfassend hat diese Dissertation die entscheidenden Prozesse im Austausch von HONO zwischen Boden und Atmosphäre aufgeklärt und den der bakteriellen HONO Bildung zugrunde liegenden Mechanismus aufgedeckt. Es konnte gezeigt werden, dass Böden sowohl eine wichtige Quelle als auch eine Senke für HONO sind und sollten folglich in zukünftigen Feldmessungen stärker berücksichtigt werden.rn
Resumo:
Radiometals play an important role in nuclear medicine as involved in diagnostic or therapeutic agents. In the present work the radiochemical aspects of production and processing of very promising radiometals of the third group of the periodic table, namely radiogallium and radiolanthanides are investigated. The 68Ge/68Ga generator (68Ge, T½ = 270.8 d) provides a cyclotron-independent source of positron-emitting 68Ga (T½ = 68 min), which can be used for coordinative labelling. However, for labelling of biomolecules via bifunctional chelators, particularly if legal aspects of production of radiopharmaceuticals are considered, 68Ga(III) as eluted initially needs to be pre-concentrated and purified. The first experimental chapter describes a system for simple and efficient handling of the 68Ge/68Ga generator eluates with a cation-exchange micro-chromatography column as the main component. Chemical purification and volume concentration of 68Ga(III) are carried out in hydrochloric acid – acetone media. Finally, generator produced 68Ga(III) is obtained with an excellent radiochemical and chemical purity in a minimised volume in a form applicable directly for the synthesis of 68Ga-labelled radiopharmaceuticals. For labelling with 68Ga(III), somatostatin analogue DOTA-octreotides (DOTATOC, DOTANOC) are used. 68Ga-DOTATOC and 68Ga-DOTANOC were successfully used to diagnose human somatostatin receptor-expressing tumours with PET/CT. Additionally, the proposed method was adapted for purification and medical utilisation of the cyclotron produced SPECT gallium radionuclide 67Ga(III). Second experimental chapter discusses a diagnostic radiolanthanide 140Nd, produced by irradiation of macro amounts of natural CeO2 and Pr2O3 in natCe(3He,xn)140Nd and 141Pr(p,2n)140Nd nuclear reactions, respectively. With this produced and processed 140Nd an efficient 140Nd/140Pr radionuclide generator system has been developed and evaluated. The principle of radiochemical separation of the mother and daughter radiolanthanides is based on physical-chemical transitions (hot-atom effects) of 140Pr following the electron capture process of 140Nd. The mother radionuclide 140Nd(III) is quantitatively absorbed on a solid phase matrix in the chemical form of 140Nd-DOTA-conjugated complexes, while daughter nuclide 140Pr is generated in an ionic species. With a very high elution yield and satisfactory chemical and radiolytical stability the system could able to provide the short-lived positron-emitting radiolanthanide 140Pr for PET investigations. In the third experimental chapter, analogously to physical-chemical transitions after the radioactive decay of 140Nd in 140Pr-DOTA, the rapture of the chemical bond between a radiolanthanide and the DOTA ligand, after the thermal neutron capture reaction (Szilard-Chalmers effect) was evaluated for production of the relevant radiolanthanides with high specific activity at TRIGA II Mainz nuclear reactor. The physical-chemical model was developed and first quantitative data are presented. As an example, 166Ho could be produced with a specific activity higher than its limiting value for TRIGA II Mainz, namely about 2 GBq/mg versus 0.9 GBq/mg. While free 166Ho(III) is produced in situ, it is not forming a 166Ho-DOTA complex and therefore can be separated from the inactive 165Ho-DOTA material. The analysis of the experimental data shows that radionuclides with half-life T½ < 64 h can be produced on TRIGA II Mainz nuclear reactor, with specific activity higher than any available at irradiation of simple targets e.g. oxides.
Resumo:
Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.
Resumo:
ABSTRACT: In this work, proton conducting copolymers, polymer blends and composites containing phosphonic acid groups have been prepared. Proton conduction mechanisms in these materials are discussed respectively in both, the anhydrous and humidified state. Atom transfer radical copolymerization (ATRCP) of diisopropyl-p-vinylbenzyl phosphonate (DIPVBP) and 4-vinyl pyridine (4VP) is studied for the first time in this work. The kinetic parameters are obtained by using the 1H-NMR online technique. Proton conduction in poly(vinylbenzyl phosphonic acid) (PVBPA) homopolymer and its statistical copolymers with 4-vinyl pyridine (poly(VBPA-stat-4VP)s) are comprehensively studied in both, the “dry” and “wet” state. Effects of temperature, water content and polymer composition on proton conductivities are studied and proton transport mechanisms under various conditions are discussed. The proton conductivity of the polymers is in the range of 10-6-10-8 S/cm in nominally dry state at 150 oC. However, proton conductivity of the polymers increases rapidly with water content in the polymers which can reach 10-2 S/cm at the water uptake of 25% in the polymers. The highest proton conductivity obtained from the polymers can even reach 0.3 S/cm which was measured at 85oC with 80% relative humidity in the measuring atmosphere. Poly(4-vinyl pyridine) was grafted from the surface of SiO2 nanoparticles using ATRP in this work for the first time. Following this approach, silica nanoparticles with a shell of polymeric layer are used as basic particles in a polymeric acidic matrix. The proton conductivities of the composites are studied under both, humidified and dry conditions. In dry state, the conductivity of the composites is in the range of 10-10~10-4 S/cm at 150 oC. While in humid state, the composites show much higher proton conductivity. The highest proton conductivity obtained with the composites is 0.5 S/cm measured at 85oC with 80% relative humidity in the measuring atmosphere. The miscibility of poly (vinyl phosphonic acid) and PEO is studied for the first time in this work and a phase diagram is plotted based on a DSC study and optical microscopy. With this knowledge, homogeneous PVPA/PEO mixtures are prepared as proton-conducting polymer blends. The mobility of phosphonic acid groups and PEO in the blends is determined by 1H-MAS-NMR in temperature dependent measurements. The effect of composition and the role of PEO on proton conduction are discussed.