4 resultados para Hopfield Neural Network
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Information processing and storage in the brain may be presented by the oscillations and cell assemblies. Here we address the question of how individual neurons associate together to assemble neural networks and present spontaneous electrical activity. Therefore, we dissected the neonatal brain at three different levels: acute 1-mm thick brain slice, cultured organotypic 350-µm thick brain slice and dissociated neuronal cultures. The spatio-temporal properties of neural activity were investigated by using a 60-channel Micro-electrode arrays (MEA), and the cell assemblies were studied by using a template-matching method. We find local on-propagating as well as large- scale propagating spontaneous oscillatory activity in acute slices, spontaneous network activity characterized by synchronized burst discharges in organotypic cultured slices, and autonomous bursting behaviour in dissociated neuronal cultures. Furthermore, repetitive spike patterns emerge after one week of dissociated neuronal culture and dramatically increase their numbers as well as their complexity and occurrence in the second week. Our data indicate that neurons can self-organize themselves, assembly to a neural network, present spontaneous oscillations, and emerge spatio-temporal activation patterns. The spontaneous oscillations and repetitive spike patterns may serve fundamental functions for information processing and storage in the brain.
Resumo:
Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. There are two projects in this thesis. In project1, we performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1–2 s in duration and ~10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150–300 ms duration and 30–40 Hz in frequency occurred every 10–30 s. (3) Long oscillations appeared only every ~20 min and revealed the largest amplitude (250–750 µV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200–400 µm in diameter, long oscillations propagated with 25–30 µm/s and synchronized 600-800 µm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDAreceptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks. In project2, Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex and somatosensory thalamus of newborn rats in vivo, we found that spontaneous and whisker stimulation induced activity patterns were restricted to functional cortical columns already at the day of birth. Spontaneous and stimulus evoked cortical activity consisted of gamma oscillations followed by spindle bursts. Spontaneous events were mainly generated in the thalamus or by spontaneous whisker movements. Our findings indicate that during early developmental stages cortical networks self-organize in ontogenetic columns via spontaneous gamma oscillations triggered by the thalamus or sensory periphery.
Resumo:
Long-term potentiation in the neonatal rat rnbarrel cortex in vivo rnLong-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex LTP has been so far only studied in vitro. I combined voltage-sensitive dye imaging with extracellular multi-electrode recordings to study whisker stimulation-induced LTP for both the slope of field potential and the number of multi-unit activity in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the stimulated barrel-related column, smaller in the surrounding septal region and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV / lower layer II/III at P3-P5 and in the cortical plate / upper layer V at P0-P1. This study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo. These activity-dependent modifications during the critical period may play an important role in the development and refinement of the topographic map in the barrel cortex. (An et al., 2012)rnEarly motor activity triggered by gamma and spindle bursts in neonatal rat motor cortexrnSelf-generated neuronal activity generated in subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neuronal activity patterns and functions of neonatal primary motor cortex (M1) in the early movements are still unknown. I combined voltage-sensitive dye imaging with simultaneous extracellular multi-electrode recordings in the neonatal rat S1 and M1 in vivo. At P3-P5, gamma and spindle bursts observed in M1 could trigger early paw movements. Furthermore, the paw movements could be also elicited by the focal electrical stimulation of M1 at layer V. Local inactivation of M1 could significantly attenuate paw movements, suggesting that the neonatal M1 operates in motor mode. In contrast, the neonatal M1 can also operate in sensory mode. Early spontaneous movements and sensory stimulations of paw trigger gamma and spindle bursts in M1. Blockade of peripheral sensory input from the paw completely abolished sensory evoked gamma and spindle bursts. Moreover, both sensory evoked and spontaneously occurring gamma and spindle bursts mediated interactions between S1 and M1. Accordingly, local inactivation of the S1 profoundly reduced paw stimulation-induced and spontaneously occurring gamma and spindle bursts in M1, indicating that S1 plays a critical role in generation of the activity patterns in M1. This study proposes that both self-generated and sensory evoked gamma and spindle bursts in M1 may contribute to the refinement and maturation of corticospinal and sensorimotor networks required for sensorimotor coordination.rn
Resumo:
Epileptic seizures are the manifestations of epilepsy, which is a major neurological disorder and occurs with a high incidence during early childhood. A fundamental mechanism underlying epileptic seizures is loss of balance between neural excitation and inhibition toward overexcitation. Glycine receptor (GlyR) is ionotropic neurotransmitter receptor that upon binding of glycine opens an anion pore and mediates in the adult nervous system a consistent inhibitory action. While previously it was assumed that GlyRs mediate inhibition mainly in the brain stem and spinal cord, recent studies reported the abundant expression of GlyRs throughout the brain, in particular during neuronal development. But no information is available regarding whether activation of GlyRs modulates neural network excitability and epileptiform activities in the immature central nervous system (CNS). Therefore the study in this thesis addresses the role of GlyRs in the modulation of neuronal excitability and epileptiform activity in the immature rat brain. By using in vitro intact corticohippocampal formation (CHF) of rats at postnatal days 4-7 and electrophysiological methods, a series of pharmacological examinations reveal that GlyRs are directly implicated in the control of hippocampal excitation levels at this age. In this thesis I am able to show that GlyRs are functionally expressed in the immature hippocampus and exhibit the classical pharmacology of GlyR, which can be activated by both glycine and the presumed endogenous agonist taurine. This study also reveals that high concentration of taurine is anticonvulsive, but lower concentration of taurine is proconvulsive. A substantial fraction of both the pro- and anticonvulsive effects of taurine is mediated via GlyRs, although activation of GABAA receptors also considerably contributes to the taurine effects. Similarly, glycine exerts both pro- and anticonvulsive effects at low and high concentrations, respectively. The proconvulsive effects of taurine and glycine depend on NKCC1-mediated Cl- accumulation, as bath application of NKCC1 inhibitor bumetanide completely abolishes proconvulsive effects of low taurine and glycine concentrations. Inhibition of GlyRs with low concentration of strychnine triggers epileptiform activity in the CA3 region of immature CHF, indicating that intrinsically an inhibitory action of GlyRs overwhelms its depolarizing action in the immature hippocampus. Additionally, my study indicates that blocking taurine transporters to accumulate endogenous taurine reduces epileptiform activity via activation of GABAA receptors, but not GlyRs, while blocking glycine transporters has no observable effect on epileptiform activity. From the main results of this study it can be concluded that in the immature rat hippocampus, activation of GlyRs mediates both pro- and anticonvulsive effects, but that a persistent activation of GlyRs is required to prevent intrinic neuronal overexcitability. In summary, this study uncovers an important role of GlyRs in the modulation of neuronal excitability and epileptiform activity in the immature rat hippocampus, and indicates that glycinergic system can potentially be a new therapeutic target against epileptic seizures of children.