4 resultados para High Temperature,Thermal Properties,Mechanical Properties,Bond Properties,Steel,Concrete,Fire Resistance Design

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis investigates phenomena of vortex dynamics in type II superconductors depending on the dimensionality of the flux-line system and the strength of the driving force. In the low dissipative regime of Bi_2Sr_2CaCu_2O_{8+delta} (BSCCO) the influence of oxygen stoichiometry on flux-line tension was examined. An entanglement crossover of the vortex system at low magnetic fields was identified and a comprehensive B-T phase diagram of solid and fluid phases derived.In YBa_2Cu_3O_7 (YBCO) extremely long (>100 mm) high-quality measurement bridges allowed to extend the electric-field window in transport measurements by up to three orders of magnitude. Complementing analyses of the data conclusively produced dynamic exponents of the glass transition z~9 considerably higher than theoretically predicted and previously reported. In high-dissipative measurements a voltage instability appearing in the current-voltage characteristics of type II superconductors was observed for the first time in BSCCO and shown to result from a Larkin-Ovchinnikov flux-flow vortex instability under the influence of quasi-particle heating. However, in an analogous investigation of YBCO the instability was found to appear only in the temperature and magnetic-field regime of the vortex-glass state. Rapid-pulse measurements fully confirmed this correlation of vortex glass and instability in YBCO and revealed a constant rise time (~µs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations of silicate and borate glasses and melts: Structure, diffusion dynamics and vibrational properties. In this work computer simulations of the model glass formers SiO2 and B2O3 are presented, using the techniques of classical molecular dynamics (MD) simulations and quantum mechanical calculations, based on density functional theory (DFT). The latter limits the system size to about 100−200 atoms. SiO2 and B2O3 are the two most important network formers for industrial applications of oxide glasses. Glass samples are generated by means of a quench from the melt with classical MD simulations and a subsequent structural relaxation with DFT forces. In addition, full ab initio quenches are carried out with a significantly faster cooling rate. In principle, the structural properties are in good agreement with experimental results from neutron and X-ray scattering, in all cases. A special focus is on the study of vibrational properties, as they give access to low-temperature thermodynamic properties. The vibrational spectra are calculated by the so-called ”frozen phonon” method. In all cases, the DFT curves show an acceptable agreement with experimental results of inelastic neutron scattering. In case of the model glass former B2O3, a new classical interaction potential is parametrized, based on the liquid trajectory of an ab initio MD simulation at 2300 K. In this course, a structural fitting routine is used. The inclusion of 3-body angular interactions leads to a significantly improved agreement of the liquid properties of the classical MD and ab initio MD simulations. However, the generated glass structures, in all cases, show a significantly lower fraction of 3-membered planar boroxol rings as predicted by experimental results (f=60%-80%). The largest boroxol ring fraction of f=15±5% is observed in the full ab initio quenches from 2300 K. In case of SiO2, the glass structures after the quantum mechanical relaxation are the basis for calculations of the linear thermal expansion coefficient αL(T), employing the quasi-harmonic approximation. The striking observation is a change change of sign of αL(T) going along with a temperature range of negative αL(T) at low temperatures, which is in good agreement with experimental results.