2 resultados para HERTZSPRUNG-RUSSELL AND C-M DIAGRAMS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e,e′)p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q^2 region from 0.004 to 1 (GeV/c)^2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties.rnTo account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event.rnTo separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique.rnrnThe dip structure in G_E that was seen in the analysis of the previous world data shows up in a modified form. When compared to the standard-dipole form factor as a smooth curve, the extracted G_E exhibits a strong change of the slope around 0.1 (GeV/c)^2, and in the magnetic form factor a dip around 0.2 (GeV/c)^2 is found. This may be taken as indications for a pion cloud. For higher Q^2, the fits yield larger values for G_M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)^2.rnrnThe charge and magnetic rms radii are determined as rn⟨r_e⟩=0.879 ± 0.005(stat.) ± 0.004(syst.) ± 0.002(model) ± 0.004(group) fm,rn⟨r_m⟩=0.777 ± 0.013(stat.) ± 0.009(syst.) ± 0.005(model) ± 0.002(group) fm.rnThis charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value.
Resumo:
The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.