3 resultados para HARMONIC GENERATION

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oligomere mit konjugierten pi-Elektronensystemen sind für die Materialwissenschaften von großer Bedeutung. Die vielfältigen und umfangreichen Forschungen auf diesem Gebiet gründen im Potenzial dieser Substanzklassen, das im Bereich der Laserfarbstoffe, Leuchtdioden, Photoleiter, optische Schalter oder auch der molekularen Elektronik angesiedelt ist. Zu diesen gehören auch die in dieser Arbeit synthetisierten und untersuchten Phenylenethinylene. Die Herstellung der Oligomere erfolgt nach der Methode von Sonogashira und Hagihara. Dabei wird ein Halogenaren mit einer Alkinkomponente zur Reaktion gebracht. Als Katalysator dient dabei ein Gemisch aus Bis(triphenylphosphin-palladiumdichlorid), Kupfer-(I)-iodid und Triphenylphosphin. Verwendung fanden bei der Synthese zwei Arten von Schutzgruppen. Es handelt sich dabei einerseits um die Trimethylsilyl- und die Triisopropylsilyl-Funktion, die unabhängig voneinander in ein System eingeführt werden und selektiv wieder entfernt werden können. Die zweite Art sind die Halogene Brom und Iod, die aufgrund ihrer Eigenschaft vielmehr als 'dormant group' bezeichnet werden müssen. Eine Ethinylierung führt zunächst zur Substitution des Iod- und anschließend des Bromatoms. Die so erhaltenen Oligomere werden mit verschiedenen spektroskopischen Methoden untersucht. Besonderes Interesse liegt dabei auf der Bestimmung der effektiven Konjugationslänge (EKL). Damit ist es möglich, die Länge des konjugierten Systems zu bestimmen, das für die betreffenden Eigenschaften des entsprechenden Polymers maßgeblich ist. Das nichtlineare optische Verhalten der Oligomere wird mittels der Third-Harmonic-Generation-Methode (THG) gemessen. Die resultierende Größe, die Suszeptibilität 3. Ordnung, gibt Aufschluß über mögliche industrielle Anwendungen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Elektronen in wasserstoff- und lithium-ähnlichen schweren Ionen sind den extrem starken elektrischen und magnetischen Feldern in der Umgebung des Kerns ausgesetzt. Die Laserspektroskopie der Hyperfeinaufspaltung im Grundzustand des Ions erlaubt daher einen sensitiven Test der Quantenelektrodynamik in starken Feldern insbesondere im magnetischen Sektor. Frühere Messungen an wasserstoffähnlichen Systemen die an einer Elektronenstrahl-Ionenfalle (EBIT) und am Experimentierspeicherring (ESR) der GSI Darmstadt durchgeführt wurden, waren in ihrer Genauigkeit durch zu geringe Statistik, einer starken Dopplerverbreiterung und der großen Unsicherheit in der Ionenenergie limitiert. Das ganze Potential des QED-Tests kann nur dann ausgeschöpft werden, wenn es gelingt sowohl wasserstoff- als auch lithium-ähnliche schwere Ionen mit einer um 2-3 Größenordnung gesteigerten Genauigkeit zu spektroskopieren. Um dies zu erreichen, wird gegenwärtig das neue Penningfallensystem SPECTRAP an der GSI aufgebaut und in Betrieb genommen. Es ist speziell für die Laserspektroskopie an gespeicherten hochgeladenen Ionen optimiert und wird in Zukunft von HITRAP mit nierderenergetischen hochgeladenen Ionen versorgt werden.rnrnSPECTRAP ist eine zylindrische Penningfalle mit axialem Zugang für die Injektion von Ionen und die Einkopplung eines Laserstrahls sowie einem radialen optischen Zugang für die Detektion der Fluoreszenz. Um letzteres zu realisieren ist der supraleitende Magnet als Helmholtz-Spulenpaar ausgelegt. Um die gewünschte Genauigkeit bei der Laserspektroskopie zu erreichen, muss ein effizienter und schneller Kühlprozess für die injizierten hochegeladenen Ionen realisiert werden. Dies kann mittels sympathetischer Kühlung in einer lasergekühlten Wolke leichter Ionen realisiert werden. Im Rahmen dieser Arbeit wurde ein Lasersystem und eine Ionenquelle für die Produktion einer solchen 24Mg+ Ionenwolke aufgebaut und erfolgreich an SPECTRAP in Betrieb genommen. Dazu wurde ein Festkörperlasersystem für die Erzeugung von Licht bei 279.6 nm entworfen und aufgebaut. Es besteht aus einem Faserlaser bei 1118 nm der in zwei aufeinanderfolgenden Frequenzverdopplungsstufen frequenzvervierfacht wird. Die Verdopplerstufen sind als aktiv stabilisierte Resonantoren mit nichtlinearen Kristallen ausgelegt. Das Lasersystem liefert unter optimalen Bedingeungen bis zu 15 mW bei der ultravioletten Wellenlänge und erwies sich während der Teststrahlzeiten an SPECTRAP als ausgesprochen zuverlässig. Desweiteren wurde eine Ionequelle für die gepulste Injektion von Mg+ Ionen in die SPECTRAP Falle entwickelt. Diese basiert auf der Elektronenstoßionisation eines thermischen Mg-Atomstrahls und liefert in der gepulsten Extraktion Ionenbündel mit einer kleinen Impuls- und Energieverteilung. Unter Nutzung des Lasersystems konnten damit an SPECTRAP erstmals Ionenwolken mit bis zu 2600 lasergekühlten Mg Ionen erzeugt werden. Der Nachweis erfolgte sowohl mittels Fluoreszenz als auch mit der FFT-ICR Technik. Aus der Analyse des Fluoreszenz-Linienprofils lässt sich sowohl die Sensitivität auf einzelne gespeicherte Ionen als auch eine erreichte Endtemperatur in der Größenordnung von ≈ 100 mK nach wenigen Sekunden Kühlzeit belegen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ”magic numbers”, which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of 100−130Cd by collinear laser spectroscopy.rnrnThe experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s 2S1/2 → 5p 2P3/2 transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW.rnrnThe acquired data of the Z = 48 Cd isotopes, having one proton pair less than the Z = 50 shell closure at tin, covers the isotopes from N = 52 up to N = 82 and therefore almost the complete region between the neutron shell closures N = 50 and N = 82. The isotope shifts and the hyperfine structures of these isotopes have been recorded and the magnetic dipole moments, the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I = 11/2− isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.